BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 16265648)

  • 21. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells.
    Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH
    Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications.
    Safinia L; Wilson K; Mantalaris A; Bismarck A
    Macromol Biosci; 2007 Mar; 7(3):315-27. PubMed ID: 17366509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.
    Sibambo SR; Pillay V; Choonara YE; Khan RA; Sweet JL
    Biomaterials; 2007 Sep; 28(25):3714-23. PubMed ID: 17524474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.
    Jose MV; Thomas V; Johnson KT; Dean DR; Nyairo E
    Acta Biomater; 2009 Jan; 5(1):305-15. PubMed ID: 18778977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold.
    Li J; Li L; Yu H; Cao H; Gao C; Gong Y
    ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.
    Rowlands AS; Lim SA; Martin D; Cooper-White JJ
    Biomaterials; 2007 Apr; 28(12):2109-21. PubMed ID: 17258315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid).
    Miao X; Tan DM; Li J; Xiao Y; Crawford R
    Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering.
    Jing D; Wu L; Ding J
    Macromol Biosci; 2006 Sep; 6(9):747-57. PubMed ID: 16967479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique.
    Moshfeghian A; Tillman J; Madihally SV
    J Biomed Mater Res A; 2006 Nov; 79(2):418-30. PubMed ID: 16906526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.
    Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.