These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16265898)

  • 21. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion.
    Vlachou D; Zimmermann T; Cantera R; Janse CJ; Waters AP; Kafatos FC
    Cell Microbiol; 2004 Jul; 6(7):671-85. PubMed ID: 15186403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The developmental migration of Plasmodium in mosquitoes.
    Vlachou D; Schlegelmilch T; Runn E; Mendes A; Kafatos FC
    Curr Opin Genet Dev; 2006 Aug; 16(4):384-91. PubMed ID: 16793259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen.
    Dinglasan RR; Kalume DE; Kanzok SM; Ghosh AK; Muratova O; Pandey A; Jacobs-Lorena M
    Proc Natl Acad Sci U S A; 2007 Aug; 104(33):13461-6. PubMed ID: 17673553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do malaria ookinetes cross the mosquito midgut wall?
    Baton LA; Ranford-Cartwright LC
    Trends Parasitol; 2005 Jan; 21(1):22-8. PubMed ID: 15639737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell biological analysis of mosquito midgut invasion: the defensive role of the actin-based ookinete hood.
    Schlegelmilch T; Vlachou D
    Pathog Glob Health; 2013 Dec; 107(8):480-92. PubMed ID: 24428832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmodium Oocysts: Overlooked Targets of Mosquito Immunity.
    Smith RC; Barillas-Mury C
    Trends Parasitol; 2016 Dec; 32(12):979-990. PubMed ID: 27639778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut.
    Ukegbu CV; Akinosoglou KA; Christophides GK; Vlachou D
    Infect Immun; 2017 Aug; 85(8):. PubMed ID: 28559405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of novel Plasmodium gallinaceum zygote- and ookinete-expressed proteins as targets for blocking malaria transmission.
    Langer RC; Li F; Vinetz JM
    Infect Immun; 2002 Jan; 70(1):102-6. PubMed ID: 11748169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell.
    Ishino T; Orito Y; Chinzei Y; Yuda M
    Mol Microbiol; 2006 Feb; 59(4):1175-84. PubMed ID: 16430692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei.
    Raibaud A; Brahimi K; Roth CW; Brey PT; Faust DM
    Mol Biochem Parasitol; 2006 Nov; 150(1):107-13. PubMed ID: 16908078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of malaria parasites in the mosquito midgut.
    Bennink S; Kiesow MJ; Pradel G
    Cell Microbiol; 2016 Jul; 18(7):905-18. PubMed ID: 27111866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development.
    Lecona-Valera AN; Tao D; Rodríguez MH; López T; Dinglasan RR; Rodríguez MC
    Parasit Vectors; 2016 May; 9(1):274. PubMed ID: 27165123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward the development of effective transmission-blocking vaccines for malaria.
    Nikolaeva D; Draper SJ; Biswas S
    Expert Rev Vaccines; 2015 May; 14(5):653-80. PubMed ID: 25597923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate.
    Zheng W; Liu F; He Y; Liu Q; Humphreys GB; Tsuboi T; Fan Q; Luo E; Cao Y; Cui L
    Parasit Vectors; 2017 Jan; 10(1):8. PubMed ID: 28057055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito.
    Arai M; Billker O; Morris HR; Panico M; Delcroix M; Dixon D; Ley SV; Sinden RE
    Mol Biochem Parasitol; 2001 Aug; 116(1):17-24. PubMed ID: 11463462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perforin-like protein PPLP4 is crucial for mosquito midgut infection by Plasmodium falciparum.
    Wirth CC; Bennink S; Scheuermayer M; Fischer R; Pradel G
    Mol Biochem Parasitol; 2015 Jun; 201(2):90-9. PubMed ID: 26166358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic propeptide inhibits mosquito midgut chitinase and blocks sporogonic development of malaria parasite.
    Bhatnagar RK; Arora N; Sachidanand S; Shahabuddin M; Keister D; Chauhan VS
    Biochem Biophys Res Commun; 2003 May; 304(4):783-7. PubMed ID: 12727225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lectin-carbohydrate recognition mechanism of Plasmodium berghei in the midgut of malaria vector Anopheles stephensi using quantum dot as a new approach.
    Basseri HR; Javazm MS; Farivar L; Abai MR
    Acta Trop; 2016 Apr; 156():37-42. PubMed ID: 26772447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do Plasmodium ookinetes invade a specific cell type in the mosquito midgut?
    Shahabuddin M
    Trends Parasitol; 2002 Apr; 18(4):157-61. PubMed ID: 11998702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.