These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16266132)

  • 1. Stimulus-frequency otoacoustic emissions measured with amplitude-modulated suppressor tones (L).
    Neely ST; Johnson TA; Garner CA; Gorga MP
    J Acoust Soc Am; 2005 Oct; 118(4):2124-7. PubMed ID: 16266132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3562-75. PubMed ID: 18247764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions.
    Johnson TA; Beshaler L
    J Acoust Soc Am; 2013 Aug; 134(2):1121-33. PubMed ID: 23927112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans.
    Rasetshwane DM; Bosen EC; Kopun JG; Neely ST
    J Acoust Soc Am; 2019 Dec; 146(6):4481. PubMed ID: 31893726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus frequency otoacoustic emissions evoked by swept tones.
    Chen S; Deng J; Bian L; Li G
    Hear Res; 2013 Dec; 306():104-14. PubMed ID: 24113114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.
    Dewey JB; Dhar S
    J Acoust Soc Am; 2017 Nov; 142(5):3069. PubMed ID: 29195446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring stimulus-frequency otoacoustic emissions using swept tones.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2013 Jul; 134(1):356-68. PubMed ID: 23862813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviors of cubic distortion product otoacoustic emissions evoked by amplitude modulated tones.
    Bian L; Chen S
    J Acoust Soc Am; 2011 Feb; 129(2):828-39. PubMed ID: 21361441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression.
    Vencovský V; Vetešník A; Gummer AW
    J Acoust Soc Am; 2020 Jun; 147(6):3992. PubMed ID: 32611132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):679-94. PubMed ID: 26373935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual Differences in Behavioural Decision Weights Related to Irregularities in Cochlear Mechanics.
    Lee J; Heo I; Chang AC; Bond K; Stoelinga C; Lutfi R; Long G
    Adv Exp Med Biol; 2016; 894():457-465. PubMed ID: 27080687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.