These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Zeng X; Li X; Xing L; Liu X; Luo S; Wei W; Kong B; Li Y Biosens Bioelectron; 2009 May; 24(9):2898-903. PubMed ID: 19321335 [TBL] [Abstract][Full Text] [Related]
9. Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Kanyong P; Pemberton RM; Jackson SK; Hart JP Anal Biochem; 2012 Sep; 428(1):39-43. PubMed ID: 22705172 [TBL] [Abstract][Full Text] [Related]
10. Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture. Pemberton RM; Xu J; Pittson R; Biddle N; Drago GA; Jackson SK; Hart JP Anal Biochem; 2009 Feb; 385(2):334-41. PubMed ID: 19027709 [TBL] [Abstract][Full Text] [Related]
11. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Chen X; Chen J; Deng C; Xiao C; Yang Y; Nie Z; Yao S Talanta; 2008 Aug; 76(4):763-7. PubMed ID: 18656655 [TBL] [Abstract][Full Text] [Related]
12. Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode. Gilbert L; Jenkins AT; Browning S; Hart JP Anal Biochem; 2009 Oct; 393(2):242-7. PubMed ID: 19576165 [TBL] [Abstract][Full Text] [Related]
13. An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes. Dai Z; Fang M; Bao J; Wang H; Lu T Anal Chim Acta; 2007 May; 591(2):195-9. PubMed ID: 17481408 [TBL] [Abstract][Full Text] [Related]
14. A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola's Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose. Piano M; Serban S; Biddle N; Pittson R; Drago GA; Hart JP Anal Biochem; 2010 Jan; 396(2):269-74. PubMed ID: 19766585 [TBL] [Abstract][Full Text] [Related]
15. An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Setti L; Fraleoni-Morgera A; Ballarin B; Filippini A; Frascaro D; Piana C Biosens Bioelectron; 2005 Apr; 20(10):2019-26. PubMed ID: 15741071 [TBL] [Abstract][Full Text] [Related]
16. Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine. Kuhnline CD; Gangel MG; Hulvey MK; Martin RS Analyst; 2006 Feb; 131(2):202-7. PubMed ID: 16440083 [TBL] [Abstract][Full Text] [Related]
17. A novel procedure for rapid surface functionalisation and mediator loading of screen-printed carbon electrodes. Pchelintsev NA; Millner PA Anal Chim Acta; 2008 Apr; 612(2):190-7. PubMed ID: 18358865 [TBL] [Abstract][Full Text] [Related]
18. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite. Li Y; Liu X; Yuan H; Xiao D Biosens Bioelectron; 2009 Aug; 24(12):3706-10. PubMed ID: 19541471 [TBL] [Abstract][Full Text] [Related]
19. Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: calcium carbonate nanoparticles. Shan D; Zhu M; Xue H; Cosnier S Biosens Bioelectron; 2007 Mar; 22(8):1612-7. PubMed ID: 16920350 [TBL] [Abstract][Full Text] [Related]
20. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors. Kotzian P; Janků T; Kalcher K; Vytras K Anal Chim Acta; 2007 Sep; 599(2):287-93. PubMed ID: 17870292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]