BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 16266786)

  • 1. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate.
    Rao MV; Campbell J; Yuan A; Kumar A; Gotow T; Uchiyama Y; Nixon RA
    J Cell Biol; 2003 Dec; 163(5):1021-31. PubMed ID: 14662746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C; Shea TB
    Brain Res Mol Brain Res; 2004 Mar; 122(2):188-92. PubMed ID: 15010211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport.
    Rao MV; Garcia ML; Miyazaki Y; Gotow T; Yuan A; Mattina S; Ward CM; Calcutt NA; Uchiyama Y; Nixon RA; Cleveland DW
    J Cell Biol; 2002 Aug; 158(4):681-93. PubMed ID: 12186852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurofilament high molecular weight-green fluorescent protein fusion is normally expressed in neurons and transported in axons: a neuronal marker to investigate the biology of neurofilaments.
    Letournel F; Bocquet A; Perrot R; Dechaume A; Guinut F; Eyer J; Barthelaix A
    Neuroscience; 2006; 137(1):103-11. PubMed ID: 16289584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glutamate-rich region of the larger lamprey neurofilament sidearm is essential for proper neurofilament architecture.
    Lee S; Chu B; Yao J; Shea TB; Hall GF
    Brain Res; 2008 Sep; 1231():1-5. PubMed ID: 18675794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New movements in neurofilament transport, turnover and disease.
    Barry DM; Millecamps S; Julien JP; Garcia ML
    Exp Cell Res; 2007 Jun; 313(10):2110-20. PubMed ID: 17451679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA; Paskevich PA; Sihag RK; Thayer CY
    J Cell Biol; 1994 Aug; 126(4):1031-46. PubMed ID: 7519617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurofilaments in health and disease.
    Gotow T
    Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of neurofilament dynamics by phosphorylation.
    Shea TB; Chan WK
    Eur J Neurosci; 2008 Apr; 27(8):1893-901. PubMed ID: 18412610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis.
    Collard JF; Côté F; Julien JP
    Nature; 1995 May; 375(6526):61-4. PubMed ID: 7536898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport.
    Sihag RK; Nixon RA
    J Biol Chem; 1991 Oct; 266(28):18861-7. PubMed ID: 1717455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC
    Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heavy neurofilament protein is expressed in regenerating adult but not embryonic mammalian optic fibers in vitro.
    Bates CA; Meyer RL
    Exp Neurol; 1993 Feb; 119(2):249-57. PubMed ID: 8432362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice.
    Meier J; Couillard-Després S; Jacomy H; Gravel C; Julien JP
    J Neuropathol Exp Neurol; 1999 Oct; 58(10):1099-110. PubMed ID: 10515233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments.
    Xu Z; Tung VW
    Brain Res; 2000 Jun; 866(1-2):326-32. PubMed ID: 10825509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.
    Rao MV; Yuan A; Campbell J; Kumar A; Nixon RA
    PLoS One; 2012; 7(9):e44320. PubMed ID: 23028520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system.
    Shea TB; Dahl DC; Nixon RA; Fischer I
    J Neurosci Res; 1997 Jun; 48(6):515-23. PubMed ID: 9210521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses.
    Shea TB; Lee S
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):589-95. PubMed ID: 21990272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.