These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16267053)
21. Identification of the actinorhodin monomer and its related compound from a deletion mutant of the actVA-ORF4 gene of Streptomyces coelicolor A3(2). Taguchi T; Ebihara T; Furukawa A; Hidaka Y; Ariga R; Okamoto S; Ichinose K Bioorg Med Chem Lett; 2012 Aug; 22(15):5041-5. PubMed ID: 22765902 [TBL] [Abstract][Full Text] [Related]
23. Crystallization and preliminary X-ray diffraction studies of a monooxygenase from Streptomyces coelicolor A3(2) involved in the biosynthesis of the polyketide actinorhodin. Kendrew SG; Federici L; Savino C; Miele A; Marsh EN; Vallone B Acta Crystallogr D Biol Crystallogr; 2000 Apr; 56(Pt 4):481-3. PubMed ID: 10739927 [TBL] [Abstract][Full Text] [Related]
26. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590 [TBL] [Abstract][Full Text] [Related]
27. Tuning of p Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994 [TBL] [Abstract][Full Text] [Related]
28. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system. Gao B; Ellis HR Biochim Biophys Acta; 2007 Mar; 1774(3):359-67. PubMed ID: 17289450 [TBL] [Abstract][Full Text] [Related]
29. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage. Mangkalee M; Oonanant W; Aonbangkhen C; Pimviriyakul P; Tinikul R; Chaiyen P; Insin N; Sucharitakul J FEBS J; 2023 Nov; 290(21):5171-5195. PubMed ID: 37522421 [TBL] [Abstract][Full Text] [Related]
30. Purification of the two-enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. Thibaut D; Ratet N; Bisch D; Faucher D; Debussche L; Blanche F J Bacteriol; 1995 Sep; 177(18):5199-205. PubMed ID: 7665508 [TBL] [Abstract][Full Text] [Related]
31. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides. Bach RD J Phys Chem A; 2011 Oct; 115(40):11087-100. PubMed ID: 21888352 [TBL] [Abstract][Full Text] [Related]
32. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase. Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116 [TBL] [Abstract][Full Text] [Related]
33. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System. Musila JM; L Forbes D; Ellis HR Biochemistry; 2018 Jul; 57(30):4469-4477. PubMed ID: 29979040 [TBL] [Abstract][Full Text] [Related]
34. Structural and biochemical characterization of EDTA monooxygenase and its physical interaction with a partner flavin reductase. Jun SY; Lewis KM; Youn B; Xun L; Kang C Mol Microbiol; 2016 Jun; 100(6):989-1003. PubMed ID: 26928990 [TBL] [Abstract][Full Text] [Related]
35. Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme. Zhan X; Carpenter RA; Ellis HR Biochemistry; 2008 Feb; 47(7):2221-30. PubMed ID: 18198899 [TBL] [Abstract][Full Text] [Related]
36. Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. Xu Y; Mortimer MW; Fisher TS; Kahn ML; Brockman FJ; Xun L J Bacteriol; 1997 Feb; 179(4):1112-6. PubMed ID: 9023192 [TBL] [Abstract][Full Text] [Related]
37. Role of cytochromes P-450 and flavin-containing monooxygenase in the biotransformation of 4-fluoro-N-methylaniline. Boersma MG; Cnubben NH; van Berkel WJ; Blom M; Vervoort J; Rietjens IM Drug Metab Dispos; 1993; 21(2):218-30. PubMed ID: 8097689 [TBL] [Abstract][Full Text] [Related]
38. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase. Xiong J; Ellis HR Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769 [TBL] [Abstract][Full Text] [Related]
39. A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes. Pimviriyakul P; Chaiyen P J Biol Chem; 2018 Nov; 293(48):18525-18539. PubMed ID: 30282807 [TBL] [Abstract][Full Text] [Related]
40. Biosynthesis of nanaomycin. III. Nanaomycin A formation from nanaomycin D by nanaomycin D reductase via a hydroquinone. Tanaka H; Minami-Kakinuma S; Omura S J Antibiot (Tokyo); 1982 Nov; 35(11):1565-70. PubMed ID: 7161196 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]