BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 16267558)

  • 1. A putative stimulatory role for activator turnover in gene expression.
    Lipford JR; Smith GT; Chi Y; Deshaies RJ
    Nature; 2005 Nov; 438(7064):113-6. PubMed ID: 16267558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Gcn4 with target gene chromatin is modulated by proteasome function.
    Howard GC; Tansey WP
    Mol Biol Cell; 2016 Sep; 27(17):2735-41. PubMed ID: 27385344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system].
    Karpov DS; Osipov SA; Preobrazhenskaia OV; Karpov VL
    Mol Biol (Mosk); 2008; 42(3):518-25. PubMed ID: 18702311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic association of the proteasome demonstrates overlapping gene regulatory activity with transcription factor substrates.
    Auld KL; Brown CR; Casolari JM; Komili S; Silver PA
    Mol Cell; 2006 Mar; 21(6):861-71. PubMed ID: 16543154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome.
    Seong KM; Baek JH; Yu MH; Kim J
    FEBS Lett; 2007 May; 581(13):2567-73. PubMed ID: 17499717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase.
    Chi Y; Huddleston MJ; Zhang X; Young RA; Annan RS; Carr SA; Deshaies RJ
    Genes Dev; 2001 May; 15(9):1078-92. PubMed ID: 11331604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit.
    Ju D; Wang L; Mao X; Xie Y
    Biochem Biophys Res Commun; 2004 Aug; 321(1):51-7. PubMed ID: 15358214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
    Hernández H; Aranda C; Riego L; González A
    Biochem Biophys Res Commun; 2011 Jan; 404(3):859-64. PubMed ID: 21184740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gal11p dosage-compensates transcriptional activator deletions via Taf14p.
    Lim MK; Tang V; Le Saux A; Schüller J; Bongards C; Lehming N
    J Mol Biol; 2007 Nov; 374(1):9-23. PubMed ID: 17919657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome.
    Rubin DM; Coux O; Wefes I; Hengartner C; Young RA; Goldberg AL; Finley D
    Nature; 1996 Feb; 379(6566):655-7. PubMed ID: 8628401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators.
    Lee D; Ezhkova E; Li B; Pattenden SG; Tansey WP; Workman JL
    Cell; 2005 Nov; 123(3):423-36. PubMed ID: 16269334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [PHO2 and GCN4 transcription activators in the regulation of Saccharomyces cerevisiae acid phosphatase synthesis].
    Belova IV; Sambuk EV; Padkina MV; Smirnov MN
    Genetika; 1992 May; 28(5):11-8. PubMed ID: 1639254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation.
    Lipford JR; Deshaies RJ
    Nat Cell Biol; 2003 Oct; 5(10):845-50. PubMed ID: 14523392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae.
    Lallet S; Garreau H; Garmendia-Torres C; Szestakowska D; Boy-Marcotte E; Quevillon-Chéruel S; Jacquet M
    Mol Microbiol; 2006 Oct; 62(2):438-52. PubMed ID: 17020582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ubiquitin stress response induces altered proteasome composition.
    Hanna J; Meides A; Zhang DP; Finley D
    Cell; 2007 May; 129(4):747-59. PubMed ID: 17512408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative UPS drug targets upstream the 26S proteasome.
    Hjerpe R; Rodríguez MS
    Int J Biochem Cell Biol; 2008; 40(6-7):1126-40. PubMed ID: 18203645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome.
    Flick K; Raasi S; Zhang H; Yen JL; Kaiser P
    Nat Cell Biol; 2006 May; 8(5):509-15. PubMed ID: 16604062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor.
    Abdel-Sater F; El Bakkoury M; Urrestarazu A; Vissers S; André B
    Mol Cell Biol; 2004 Nov; 24(22):9771-85. PubMed ID: 15509782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 26S proteasome system degrades the ERM transcription factor and regulates its transcription-enhancing activity.
    Baert JL; Beaudoin C; Monte D; Degerny C; Mauen S; de Launoit Y
    Oncogene; 2007 Jan; 26(3):415-24. PubMed ID: 16832340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.