These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 16268143)
1. Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Di Toro DM; McGrath JA; Hansen DJ; Berry WJ; Paquin PR; Mathew R; Wu KB; Santore RC Environ Toxicol Chem; 2005 Oct; 24(10):2410-27. PubMed ID: 16268143 [TBL] [Abstract][Full Text] [Related]
2. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata. Lee JS; Lee JH Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331 [TBL] [Abstract][Full Text] [Related]
3. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
4. Assessment of metal toxicity and development of sediment quality guidelines using the equilibrium partitioning model for the Three Gorges Reservoir, China. Gao L; Gao B; Wei X; Zhou H; Xu D; Wang Y Environ Sci Pollut Res Int; 2015 Nov; 22(22):17577-85. PubMed ID: 26141978 [TBL] [Abstract][Full Text] [Related]
5. Refining our understanding of metal bioavailability in sediments using information from porewater: Application of a multimetal biotic ligand model as an extension of the equilibrium partitioning sediment benchmarks. Santore RC; Toll JE; DeForest DK; Croteau K; Baldwin A; Bergquist B; McPeek K; Tobiason K; Judd NL Integr Environ Assess Manag; 2022 Sep; 18(5):1335-1347. PubMed ID: 34953029 [TBL] [Abstract][Full Text] [Related]
6. Field measurement of nickel sediment toxicity: role of acid volatile sulfide. Nguyen LT; Burton GA; Schlekat CE; Janssen CR Environ Toxicol Chem; 2011 Jan; 30(1):162-72. PubMed ID: 20853448 [TBL] [Abstract][Full Text] [Related]
7. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Peng SH; Wang WX; Li X; Yen YF Chemosphere; 2004 Nov; 57(8):839-51. PubMed ID: 15488575 [TBL] [Abstract][Full Text] [Related]
8. Sediment toxicity data and excess simultaneously extracted metals from field-collected samples: Comparison to United States Environmental Protection Agency benchmarks. DeForest DK; Toll JE; Judd NL; Shaw A; McPeek K; Tobiason K; Santore RC Integr Environ Assess Manag; 2022 Jan; 18(1):174-186. PubMed ID: 34003570 [TBL] [Abstract][Full Text] [Related]
9. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil. Silva JB; Nascimento RA; de Oliva ST; de Oliveira OM; Ferreira SL Environ Monit Assess; 2015 Oct; 188(10):554. PubMed ID: 27613290 [TBL] [Abstract][Full Text] [Related]
10. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability of sediment-associated Cu and Zn to Daphnia magna. Gillis PL; Wood CM; Ranville JF; Chow-Fraser P Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492 [TBL] [Abstract][Full Text] [Related]
12. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA. Ingersoll CG; MacDonald DD; Brumbaugh WG; Johnson BT; Kemble NE; Kunz JL; May TW; Wang N; Smith JR; Sparks DW; Ireland DS Arch Environ Contam Toxicol; 2002 Aug; 43(2):156-67. PubMed ID: 12115041 [TBL] [Abstract][Full Text] [Related]
13. Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Hagopian-Schlekat T; Chandler GT; Shaw TJ Mar Environ Res; 2001 Apr; 51(3):247-64. PubMed ID: 11468968 [TBL] [Abstract][Full Text] [Related]
14. Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna. Nedrich SM; Burton GA Environ Pollut; 2017 Nov; 230():1116-1124. PubMed ID: 28800684 [TBL] [Abstract][Full Text] [Related]
15. Characterizing sediment acid volatile sulfide concentrations in European streams. Burton GA; Green A; Baudo R; Forbes V; Nguyen LT; Janssen CR; Kukkonen J; Leppanen M; Maltby L; Soares A; Kapo K; Smith P; Dunning J Environ Toxicol Chem; 2007 Jan; 26(1):1-12. PubMed ID: 17269454 [TBL] [Abstract][Full Text] [Related]
16. The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. De Jonge M; Teuchies J; Meire P; Blust R; Bervoets L Water Res; 2012 May; 46(7):2205-14. PubMed ID: 22349002 [TBL] [Abstract][Full Text] [Related]
17. Metal bioavailability and toxicity through a sediment core. Borgmann U; Norwood WP Environ Pollut; 2002; 116(1):159-68. PubMed ID: 11808549 [TBL] [Abstract][Full Text] [Related]
18. Toxicological availability of nickel to the benthic oligochaete Lumbriculus variegatus. Vandegehuchte MB; Roman YE; Nguyen LT; Janssen CR; De Schamphelaere KA Environ Int; 2007 Aug; 33(6):736-42. PubMed ID: 17395263 [TBL] [Abstract][Full Text] [Related]
19. Metal-colloid partitioning in artificial interstitial waters of marine sediments: influences of salinity, pH, and colloidal organic carbon concentration. Cantwell MG; Burgess RM Environ Toxicol Chem; 2001 Nov; 20(11):2420-7. PubMed ID: 11699764 [TBL] [Abstract][Full Text] [Related]
20. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Strom D; Simpson SL; Batley GE; Jolley DF Environ Toxicol Chem; 2011 Jul; 30(7):1599-610. PubMed ID: 21425325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]