BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16268166)

  • 1. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).
    Levy JL; Stauber JL; Adams MS; Maher WA; Kirby JK; Jolley DF
    Environ Toxicol Chem; 2005 Oct; 24(10):2630-9. PubMed ID: 16268166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35).
    Rahman MA; Hogan B; Duncan E; Doyle C; Krassoi R; Rahman MM; Naidu R; Lim RP; Maher W; Hassler C
    Ecotoxicol Environ Saf; 2014 Aug; 106():126-35. PubMed ID: 24836887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese medaka, Oryzias latipes.
    Suhendrayatna ; Ohki A; Nakajima T; Maeda S
    Chemosphere; 2002 Jan; 46(2):319-24. PubMed ID: 11827291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica.
    Suhendrayatna ; Ohki A; Nakajima T; Maeda S
    Chemosphere; 2002 Jan; 46(2):325-31. PubMed ID: 11827292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.
    Baker J; Wallschläger D
    J Environ Sci (China); 2016 Nov; 49():169-178. PubMed ID: 28007172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.
    Xie S; Liu J; Yang F; Feng H; Wei C; Wu F
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19413-19422. PubMed ID: 29728971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater.
    Karadjova IB; Slaveykova VI; Tsalev DL
    Aquat Toxicol; 2008 May; 87(4):264-71. PubMed ID: 18378014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability.
    Mkandawire M; Lyubun YV; Kosterin PV; Dudel EG
    Environ Toxicol; 2004 Feb; 19(1):26-34. PubMed ID: 14758591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of a multispecies toxicity test with tropical freshwater microalgae.
    Stone S; Adams MS; Stauber JL; Jolley DF; Warne MSJ
    Environ Pollut; 2019 Jul; 250():97-106. PubMed ID: 30986619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.
    Pantoja Munoz L; Purchase D; Jones H; Raab A; Urgast D; Feldmann J; Garelick H
    Aquat Toxicol; 2016 Jun; 175():56-72. PubMed ID: 26994369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri.
    Zhang SY; Sun GX; Yin XX; Rensing C; Zhu YG
    Chemosphere; 2013 Sep; 93(1):47-53. PubMed ID: 23726009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochelatin synthesis in Dunaliella salina induced by arsenite and arsenate under various phosphate regimes.
    Wang Y; Zhang C; Zheng Y; Ge Y
    Ecotoxicol Environ Saf; 2017 Feb; 136():150-160. PubMed ID: 27865115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of humic acid on arsenic bioaccumulation and biotransformation to zebrafish: A comparative study between As(III) and As(V) exposure.
    Wang X; Liu L; Wang X; Ren J; Jia P; Fan W
    Environ Pollut; 2020 Jan; 256():113459. PubMed ID: 31708282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of graphene oxide with co-existing arsenite and arsenate: Adsorption, transformation and combined toxicity.
    Cao X; Ma C; Zhao J; Musante C; White JC; Wang Z; Xing B
    Environ Int; 2019 Oct; 131():104992. PubMed ID: 31288181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L.
    Ranjan R; Kumar N; Gautam A; Kumar Dubey A; Pandey SN; Mallick S
    Ecotoxicol Environ Saf; 2021 Jan; 208():111418. PubMed ID: 33045435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ACCUMULATION AND REDUCTION OF ARSENATE BY THE FRESHWATER GREEN ALGA CHLORELLA SP. (CHLOROPHYTA).
    Knauer K; Hemond H
    J Phycol; 2000 Jun; 36(3):506-509. PubMed ID: 29544008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenite Oxidation by Dunaliella salina is Affected by External Phosphate Concentration.
    Wang Y; Zhang C; Yu X; Ge Y
    Bull Environ Contam Toxicol; 2020 Dec; 105(6):868-873. PubMed ID: 33211134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa.
    Zhang J; Zhou F; Liu Y; Huang F; Zhang C
    Sci Total Environ; 2020 Feb; 704():135368. PubMed ID: 31831249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure.
    Chen L; Zhang W; Guo Z; Zhang L
    Environ Pollut; 2018 Jul; 238():17-25. PubMed ID: 29533880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.