These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16268172)

  • 1. An evaluation of logistic regression models for predicting amphipod toxicity from sediment chemistry.
    Wetherington JD; Stanley BH; Adams KO; Schwer RF
    Environ Toxicol Chem; 2005 Oct; 24(10):2691-700. PubMed ID: 16268172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting amphipod toxicity from sediment chemistry using logistic regression models.
    Field LJ; MacDonald DD; Norton SB; Ingersoll CG; Severn CG; Smorong D; Lindskoog R
    Environ Toxicol Chem; 2002 Sep; 21(9):1993-2005. PubMed ID: 12206441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyst-based toxicity tests XIV--application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium).
    Chial B; Persoone G
    Environ Toxicol; 2002 Dec; 17(6):533-7. PubMed ID: 12448021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella azteca.
    McDonough KM; Azzolina NA; Hawthorne SB; Nakles DV; Neuhauser EF
    Environ Toxicol Chem; 2010 Jul; 29(7):1545-50. PubMed ID: 20821604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlaboratory variability of amphipod sediment toxicity tests in a cooperative regional monitoring program.
    Bay SM; Jirik A; Asato S
    Environ Monit Assess; 2003; 81(1-3):257-68. PubMed ID: 12620020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved prediction of sediment toxicity using a combination of sediment and overlying water contaminant exposures.
    Zhang Y; Spadaro DA; King JJ; Simpson SL
    Environ Pollut; 2020 Nov; 266(Pt 1):115187. PubMed ID: 32668359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of an indigenous amphipod (Corophium colo) to chemical contaminants in laboratory toxicity tests conducted with sediments from Sydney Harbor, Australia, and vicinity.
    McCready S; Greely CR; Hyne RV; Birch GF; Long ER
    Environ Toxicol Chem; 2005 Oct; 24(10):2545-52. PubMed ID: 16268156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.
    Hartzell SE; Unger MA; McGee BL; Wilson SM; Yonkos LT
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22158-22172. PubMed ID: 28712078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates.
    Wang N; Ingersoll CG; Kunz JL; Brumbaugh WG; Kane CM; Evans RB; Alexander S; Walker C; Bakaletz S
    Environ Toxicol Chem; 2013 Jan; 32(1):207-21. PubMed ID: 23071077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.
    Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL
    Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated approach to the toxicity assessment of Irish marine sediments: validation of established marine bioassays for the monitoring of Irish marine sediments.
    Macken A; Giltrap M; Foley B; McGovern E; McHugh B; Davoren M
    Environ Int; 2008 Oct; 34(7):1023-32. PubMed ID: 18456331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity assessment of sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA.
    Ingersoll CG; MacDonald DD; Brumbaugh WG; Johnson BT; Kemble NE; Kunz JL; May TW; Wang N; Smith JR; Sparks DW; Ireland DS
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):156-67. PubMed ID: 12115041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving toxicity prediction of metal-contaminated sediments by incorporating sediment properties.
    Zhang Y; Xie M; Spadaro DM; Simpson SL
    Environ Pollut; 2023 Dec; 338():122708. PubMed ID: 37806427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A field validation of two sediment-amphipod toxicity tests.
    Ferraro SP; Cole FA
    Environ Toxicol Chem; 2002 Jul; 21(7):1423-37. PubMed ID: 12109743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing toxicity of metal-contaminated sediments from the Upper Columbia River, Washington, USA, to benthic invertebrates.
    Besser JM; Steevens J; Kunz JL; Brumbaugh WG; Ingersoll CG; Cox S; Mebane C; Balistrieri L; Sinclair J; MacDonald D
    Environ Toxicol Chem; 2018 Dec; 37(12):3102-3114. PubMed ID: 30239039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of sediment quality guidelines based on benthic macrofauna responses.
    Ritter KJ; Bay SM; Smith RW; Vidal-Dorsch DE; Field LJ
    Integr Environ Assess Manag; 2012 Oct; 8(4):610-24. PubMed ID: 22275113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines.
    Ingersoll CG; MacDonald DD; Wang N; Crane JL; Field LJ; Haverland PS; Kemble NE; Lindskoog RA; Severn C; Smorong DE
    Arch Environ Contam Toxicol; 2001 Jul; 41(1):8-21. PubMed ID: 11385586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminants in stream sediments from seven United States metropolitan areas: part II--sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus.
    Kemble NE; Hardesty DK; Ingersoll CG; Kunz JL; Sibley PK; Calhoun DL; Gilliom RJ; Kuivila KM; Nowell LH; Moran PW
    Arch Environ Contam Toxicol; 2013 Jan; 64(1):52-64. PubMed ID: 23129064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA.
    Moran PW; Nowell LH; Kemble NE; Mahler BJ; Waite IR; Van Metre PC
    Sci Total Environ; 2017 Dec; 599-600():1469-1478. PubMed ID: 28531955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic sublethal sediment toxicity testing using the estuarine amphipod, Melita plumulosa (Zeidler): evaluation using metal-spiked and field-contaminated sediments.
    Gale SA; King CK; Hyne RV
    Environ Toxicol Chem; 2006 Jul; 25(7):1887-98. PubMed ID: 16833152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.