These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16268655)

  • 1. Enantiodivergent, biocatalytic routes to both taxol side chain antipodes.
    Feske BD; Kaluzna IA; Stewart JD
    J Org Chem; 2005 Nov; 70(23):9654-7. PubMed ID: 16268655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions.
    Kaluzna IA; Matsuda T; Sewell AK; Stewart JD
    J Am Chem Soc; 2004 Oct; 126(40):12827-32. PubMed ID: 15469278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective, biocatalytic reductions of alpha-chloro-beta-keto esters.
    Kaluzna IA; Feske BD; Wittayanan W; Ghiviriga I; Stewart JD
    J Org Chem; 2005 Jan; 70(1):342-5. PubMed ID: 15624945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoenzymatic taxanes approach using both enantiomers of the same building block. 2. Taxol CD ring unit.
    Uttaro JP; Audran G; Monti H
    J Org Chem; 2005 Apr; 70(9):3484-9. PubMed ID: 15844981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of succinate dehydrogenase flavoprotein subunit in saccharomyces cerevisiae studied by lacZ reporter strategy. Effect of FLX1 deletion.
    Giancaspero TA; Brizio C; Wait R; Boles E; Barile M
    Ital J Biochem; 2007 Dec; 56(4):319-22. PubMed ID: 19192635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of beta-keto ester by Saccharomyces cerevisiae.
    Lin J; Liu Q; Su E; Wei D; Yang S
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):831-9. PubMed ID: 18679677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary assessment of the C13-side chain 2'-hydroxylase involved in taxol biosynthesis.
    Long RM; Croteau R
    Biochem Biophys Res Commun; 2005 Dec; 338(1):410-7. PubMed ID: 16137660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the stereoselectivity of bakers' yeast reductions by genetic engineering.
    Rodríguez S; Kayser M; Stewart JD
    Org Lett; 1999 Oct; 1(8):1153-5. PubMed ID: 10825967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric sulfur ylide mediated aziridination: application in the synthesis of the side chain of taxol.
    Aggarwal VK; Vasse JL
    Org Lett; 2003 Oct; 5(21):3987-90. PubMed ID: 14535760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the dipeptidyl aminopeptidase responsible for N-terminal clipping of recombinant Exendin-4 precursor expressed in Pichia pastoris.
    Prabha L; Govindappa N; Adhikary L; Melarkode R; Sastry K
    Protein Expr Purif; 2009 Apr; 64(2):155-61. PubMed ID: 19028585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient and stereoselective biosynthesis of (2S,5S)-hexanediol with a dehydrogenase from Saccharomyces cerevisiae.
    Müller M; Katzberg M; Bertau M; Hummel W
    Org Biomol Chem; 2010 Apr; 8(7):1540-50. PubMed ID: 20237665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly stereoselective reagents for beta-keto ester reductions by genetic engineering of baker's yeast.
    Rodríguez S; Kayser MM; Stewart JD
    J Am Chem Soc; 2001 Feb; 123(8):1547-55. PubMed ID: 11456752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baker's Yeast-Mediated Reductions of alpha-Keto Esters and an alpha-Keto-beta-Lactam. Two Routes to the Paclitaxel Side Chain.
    Kayser MM; Mihovilovic MD; Kearns J; Feicht A; Stewart JD
    J Org Chem; 1999 Sep; 64(18):6603-6608. PubMed ID: 11674662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical NLS proteins from Saccharomyces cerevisiae.
    Hahn S; Maurer P; Caesar S; Schlenstedt G
    J Mol Biol; 2008 Jun; 379(4):678-94. PubMed ID: 18485366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic studies on taxol: highly stereoselective construction of the taxol C-ring via SN2' reduction of an allylic phosphonium salt.
    Utsugi M; Miyano M; Nakada M
    Org Lett; 2006 Jul; 8(14):2973-6. PubMed ID: 16805530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast.
    Wurm CA; Jakobs S
    FEBS Lett; 2006 Oct; 580(24):5628-34. PubMed ID: 16997298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2.
    Zhang ZR; Bai M; Wang XY; Zhou JM; Perrett S
    J Mol Biol; 2008 Dec; 384(3):641-51. PubMed ID: 18845158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein.
    Mormeneo M; Andrés I; Bofill C; Díaz P; Zueco J
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):437-45. PubMed ID: 18626643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring organelle turnover in yeast using fluorescent protein tags.
    Devenish RJ; Prescott M; Turcic K; Mijaljica D
    Methods Enzymol; 2008; 451():109-31. PubMed ID: 19185717
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.