These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16268710)

  • 1. On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation.
    Masia M; Probst M; Rey R
    J Chem Phys; 2005 Oct; 123(16):164505. PubMed ID: 16268710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the performance of molecular polarization methods. I. Water and carbon tetrachloride close to a point charge.
    Masia M; Probst M; Rey R
    J Chem Phys; 2004 Oct; 121(15):7362-78. PubMed ID: 15473807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of polarizable models in presence of strong electric fields. I. Origin of nonlinear effects in water point-charge systems.
    Chelli R; Barducci A; Bellucci L; Schettino V; Procacci P
    J Chem Phys; 2005 Nov; 123(19):194109. PubMed ID: 16321078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.
    Smalø HS; Astrand PO; Jensen L
    J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the electronic transition dipole moment by Autler-Townes splitting: Comparison of three- and four-level excitation schemes for the Na2 A 1Sigma(u)+ - X 1Sigma(g)+ system.
    Ahmed E; Hansson A; Qi P; Kirova T; Lazoudis A; Kotochigova S; Lyyra AM; Li L; Qi J; Magnier S
    J Chem Phys; 2006 Feb; 124(8):084308. PubMed ID: 16512717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key role of the polarization anisotropy of water in modeling classical polarizable force fields.
    Piquemal JP; Chelli R; Procacci P; Gresh N
    J Phys Chem A; 2007 Aug; 111(33):8170-6. PubMed ID: 17665882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer.
    Shank A; Wang Y; Kaledin A; Braams BJ; Bowman JM
    J Chem Phys; 2009 Apr; 130(14):144314. PubMed ID: 19368452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer.
    Clavaguéra C; Calvo F; Dognon JP
    J Chem Phys; 2006 Feb; 124(7):74505. PubMed ID: 16497055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization of water in the first hydration shell of K+ and Ca2+ ions.
    Bucher D; Kuyucak S
    J Phys Chem B; 2008 Sep; 112(35):10786-90. PubMed ID: 18698721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculations of static dipole polarizabilities of alkali dimers: prospects for alignment of ultracold molecules.
    Deiglmayr J; Aymar M; Wester R; Weidemüller M; Dulieu O
    J Chem Phys; 2008 Aug; 129(6):064309. PubMed ID: 18715071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bonding analysis using localized relativistic orbitals: water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po).
    Dubillard S; Rota JB; Saue T; Faegri K
    J Chem Phys; 2006 Apr; 124(15):154307. PubMed ID: 16674226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of polarizable point dipole models for molten sodium iodide.
    Alcaraz O; Bitrián V; Trullàs J
    J Chem Phys; 2007 Oct; 127(15):154508. PubMed ID: 17949174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters.
    Wang Y; Bowman JM
    J Chem Phys; 2011 Apr; 134(15):154510. PubMed ID: 21513398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuum treatment of electronic polarization effect.
    Tan YH; Luo R
    J Chem Phys; 2007 Mar; 126(9):094103. PubMed ID: 17362100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice.
    Yu H; van Gunsteren WF
    J Chem Phys; 2004 Nov; 121(19):9549-64. PubMed ID: 15538877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric saturation of the ion hydration shell and interaction between two double helices of DNA in mono- and multivalent electrolyte solutions: foundations of the epsilon-modified Poisson-Boltzmann theory.
    Gavryushov S
    J Phys Chem B; 2007 May; 111(19):5264-76. PubMed ID: 17439264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a consistent treatment of polarization in model QM/MM calculations.
    Illingworth CJ; Parkes KE; Snell CR; Ferenczy GG; Reynolds CA
    J Phys Chem A; 2008 Nov; 112(47):12151-6. PubMed ID: 18986123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.