These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16268713)

  • 21. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition.
    Donev A; Stillinger FH; Torquato S
    J Chem Phys; 2007 Sep; 127(12):124509. PubMed ID: 17902923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics.
    Turner RM; Jack RL; Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022115. PubMed ID: 26382352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T; Matsubara E; Chen HS; Saida J; Yamamoto T; Nishiyama N
    J Chem Phys; 2006 Oct; 125(15):154502. PubMed ID: 17059267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topological versus chemical ordering in network glasses at intermediate and extended length scales.
    Salmon PS; Martin RA; Mason PE; Cuello GJ
    Nature; 2005 May; 435(7038):75-8. PubMed ID: 15875017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-diffusion of supercooled o-terphenyl near the glass transition temperature.
    Mapes MK; Swallen SF; Ediger MD
    J Phys Chem B; 2006 Jan; 110(1):507-11. PubMed ID: 16471562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers.
    Speck T; Chandler D
    J Chem Phys; 2012 May; 136(18):184509. PubMed ID: 22583302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probability distribution of inherent states in models of granular media and glasses.
    Coniglio A; Fierro A; Nicodemi M
    Eur Phys J E Soft Matter; 2002 Nov; 9(3):219-26. PubMed ID: 15010911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transition in coupled replicas may not imply a finite-temperature ideal glass transition in glass-forming systems.
    Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):030301. PubMed ID: 24730776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vigorous thermal excitations in a double-tetrahedral chain of localized Ising spins and mobile electrons mimic a temperature-driven first-order phase transition.
    Gálisová L; Strečka J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022134. PubMed ID: 25768485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion trapping times and dynamic percolation in an Ising system.
    Chen CL; Shapir Y; Chimowitz EH
    J Chem Phys; 2008 Jul; 129(2):024701. PubMed ID: 18624546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual time scales in simulated annealing of a two-dimensional Ising spin glass.
    Rubin SJ; Xu N; Sandvik AW
    Phys Rev E; 2017 May; 95(5-1):052133. PubMed ID: 28618601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical study of a fragile three-dimensional kinetically constrained model.
    Berthier L; Garrahan JP
    J Phys Chem B; 2005 Mar; 109(8):3578-85. PubMed ID: 16851396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local polymer dynamics under strong connectivity constraints: the dendrimer case.
    Karatasos K; Lyulin AV
    J Chem Phys; 2006 Nov; 125(18):184907. PubMed ID: 17115795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bond fluctuation model to describe physical aging in polymeric materials.
    Arnoult M; Saiter JM; Pareige C; Meseguer Dueñas JM; Gómez Ribelles JL; Molina Mateo J
    J Chem Phys; 2009 Jun; 130(21):214905. PubMed ID: 19508096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships between the single particle barrier hopping theory and thermodynamic, disordered media, elastic, and jamming models of glassy systems.
    Schweizer KS
    J Chem Phys; 2007 Oct; 127(16):164506. PubMed ID: 17979359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the mechanism of activated transport in glassy liquids.
    Lubchenko V; Rabochiy P
    J Phys Chem B; 2014 Nov; 118(47):13744-59. PubMed ID: 25347199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature of systems out of thermodynamic equilibrium.
    Garden JL; Richard J; Guillou H
    J Chem Phys; 2008 Jul; 129(4):044508. PubMed ID: 18681661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zero- and low-temperature behavior of the two-dimensional ±J Ising spin glass.
    Thomas CK; Huse DA; Middleton AA
    Phys Rev Lett; 2011 Jul; 107(4):047203. PubMed ID: 21867036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growing length and time scales in glass-forming liquids.
    Karmakar S; Dasgupta C; Sastry S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3675-9. PubMed ID: 19234111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport.
    Heuer A
    J Phys Condens Matter; 2008 Sep; 20(37):373101. PubMed ID: 21694408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.