BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

677 related articles for article (PubMed ID: 16268716)

  • 1. Physics of solid and liquid alkali halide surfaces near the melting point.
    Zykova-Timan T; Ceresoli D; Tartaglino U; Tosatti E
    J Chem Phys; 2005 Oct; 123(16):164701. PubMed ID: 16268716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why are alkali halide surfaces not wetted by their own melt?
    Zykova-Timan T; Ceresoli D; Tartaglino U; Tosatti E
    Phys Rev Lett; 2005 May; 94(17):176105. PubMed ID: 15904317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the melting point of alkali halides by means of computer simulations.
    Aragones JL; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2012 Sep; 137(10):104507. PubMed ID: 22979874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface tensions in NaCl-water-air systems from MD simulations.
    Bahadur R; Russell LM; Alavi S
    J Phys Chem B; 2007 Oct; 111(41):11989-96. PubMed ID: 17894485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio studies of layering behavior of liquid sodium surfaces and interfaces.
    Walker BG; Marzari N; Molteni C
    J Chem Phys; 2006 May; 124(17):174702. PubMed ID: 16689585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase diagrams of alkali halides using two interaction models: a molecular dynamics and free energy study.
    Rodrigues PC; Silva Fernandes FM
    J Chem Phys; 2007 Jan; 126(2):024503. PubMed ID: 17228959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of hydration force and elastic strain energy on the stability of solid film in a very thin solid-on-liquid structure.
    Yang CY; Zhao YP
    J Chem Phys; 2004 Mar; 120(11):5366-76. PubMed ID: 15267410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of the "sharp-kink approximation" for water and other fluids.
    Garcia R; Osborne K; Subashi E
    J Phys Chem B; 2008 Jul; 112(27):8114-9. PubMed ID: 18553903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene.
    Eike DM; Maginn EJ
    J Chem Phys; 2006 Apr; 124(16):164503. PubMed ID: 16674142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Status of the three-phase line tension: a review.
    Amirfazli A; Neumann AW
    Adv Colloid Interface Sci; 2004 Aug; 110(3):121-41. PubMed ID: 15328061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride.
    Jayaraman S; Maginn EJ
    J Chem Phys; 2007 Dec; 127(21):214504. PubMed ID: 18067361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation of fluid-solid interfaces at nanoscale.
    Ould-Kaddour F; Levesque D
    J Chem Phys; 2011 Dec; 135(22):224705. PubMed ID: 22168717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a robust and general molecular simulation method for computing solid-liquid coexistence.
    Eike DM; Brennecke JF; Maginn EJ
    J Chem Phys; 2005 Jan; 122(1):14115. PubMed ID: 15638650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters.
    Kuo CL; Clancy P
    J Phys Chem B; 2005 Jul; 109(28):13743-54. PubMed ID: 16852722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and Dynamic Wetting Behavior of Triglycerides on Solid Surfaces.
    Michalski MC; Saramago BJ
    J Colloid Interface Sci; 2000 Jul; 227(2):380-389. PubMed ID: 10873324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study.
    Zeng M; Mi J; Zhong C
    Phys Chem Chem Phys; 2011 Mar; 13(9):3932-41. PubMed ID: 21212890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.