These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16269106)

  • 1. Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing.
    Bidet-Caulet A; Bertrand O
    J Cogn Neurosci; 2005 Nov; 17(11):1691-703. PubMed ID: 16269106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural circuitry underlying the executive control of auditory spatial attention.
    Wu CT; Weissman DH; Roberts KC; Woldorff MG
    Brain Res; 2007 Feb; 1134(1):187-98. PubMed ID: 17204249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks.
    Alho K; Salmi J; Koistinen S; Salonen O; Rinne T
    Brain Res; 2015 Nov; 1626():136-45. PubMed ID: 25557401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Executive control of spatial attention shifts in the auditory compared to the visual modality.
    Krumbholz K; Nobis EA; Weatheritt RJ; Fink GR
    Hum Brain Mapp; 2009 May; 30(5):1457-69. PubMed ID: 18649349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
    Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ
    Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study.
    Collignon O; Davare M; Olivier E; De Volder AG
    Brain Topogr; 2009 May; 21(3-4):232-40. PubMed ID: 19199020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal dynamics of selective attention during dichotic listening.
    Ross B; Hillyard SA; Picton TW
    Cereb Cortex; 2010 Jun; 20(6):1360-71. PubMed ID: 19789185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of working memory for moving sounds: an event-related potential and scalp current density study.
    Kaiser J; Bertrand O
    Neuroimage; 2003 Aug; 19(4):1427-38. PubMed ID: 12948700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
    Salo E; Rinne T; Salonen O; Alho K
    Brain Res; 2013 Feb; 1496():55-69. PubMed ID: 23261663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention.
    Ptak R; Schnider A
    Neuropsychologia; 2011 Sep; 49(11):3063-70. PubMed ID: 21787795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mental representations of action: the neural correlates of the verbal and motor components.
    Péran P; Démonet JF; Cherubini A; Carbebat D; Caltagirone C; Sabatini U
    Brain Res; 2010 Apr; 1328():89-103. PubMed ID: 20226773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory alpha modulations in right auditory regions reflect the validity of acoustic cues in an auditory spatial attention task.
    Weisz N; Müller N; Jatzev S; Bertrand O
    Cereb Cortex; 2014 Oct; 24(10):2579-90. PubMed ID: 23645711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of attention on cortical processing of sound motion: an EEG study.
    Kreitewolf J; Lewald J; Getzmann S
    Neuroimage; 2011 Feb; 54(3):2340-9. PubMed ID: 20965256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient and sustained brain activity during anticipatory visuospatial attention.
    Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV
    Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for differential roles of temporal and frontal components of auditory change detection.
    Shalgi S; Deouell LY
    Neuropsychologia; 2007 Apr; 45(8):1878-88. PubMed ID: 17239410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial coding of visual and somatic sensory information in body-centred coordinates.
    Galati G; Committeri G; Sanes JN; Pizzamiglio L
    Eur J Neurosci; 2001 Aug; 14(4):737-46. PubMed ID: 11556898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural mechanisms of movement speed and tau as revealed by magnetoencephalography.
    Tan H-RM; Leuthold AC; Lee DN; Lynch JK; Georgopoulos AP
    Exp Brain Res; 2009 Jun; 195(4):541-52. PubMed ID: 19424687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spatio-temporal brain dynamics of processing and integrating sound localization cues in humans.
    Tardif E; Murray MM; Meylan R; Spierer L; Clarke S
    Brain Res; 2006 May; 1092(1):161-76. PubMed ID: 16684510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.