These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 16269670)
1. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Bro C; Knudsen S; Regenberg B; Olsson L; Nielsen J Appl Environ Microbiol; 2005 Nov; 71(11):6465-72. PubMed ID: 16269670 [TBL] [Abstract][Full Text] [Related]
2. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797 [TBL] [Abstract][Full Text] [Related]
3. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes. Sunwoo IY; Sukwong P; Park YR; Jeong DY; Kim SR; Jeong GT; Kim SK Appl Biochem Biotechnol; 2021 Feb; 193(2):335-348. PubMed ID: 32959326 [TBL] [Abstract][Full Text] [Related]
6. A Mutation in Liu JJ; Zhang GC; Kong II; Yun EJ; Zheng JQ; Kweon DH; Jin YS Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29523547 [TBL] [Abstract][Full Text] [Related]
7. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462 [TBL] [Abstract][Full Text] [Related]
8. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Ostergaard S; Olsson L; Johnston M; Nielsen J Nat Biotechnol; 2000 Dec; 18(12):1283-6. PubMed ID: 11101808 [TBL] [Abstract][Full Text] [Related]
9. The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae. Fu L; Bounelis P; Dey N; Browne BL; Marchase RB; Bedwell DM J Bacteriol; 1995 Jun; 177(11):3087-94. PubMed ID: 7768805 [TBL] [Abstract][Full Text] [Related]
10. Phosphoglucomutase is an in vivo lithium target in yeast. Masuda CA; Xavier MA; Mattos KA; Galina A; Montero-Lomeli M J Biol Chem; 2001 Oct; 276(41):37794-801. PubMed ID: 11500487 [TBL] [Abstract][Full Text] [Related]
11. Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Oh D; Hopper JE Mol Cell Biol; 1990 Apr; 10(4):1415-22. PubMed ID: 2138705 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the aldose reductase GRE3 suppresses lithium-induced galactose toxicity in Saccharomyces cerevisiae. Masuda CA; Previato JO; Miranda MN; Assis LJ; Penha LL; Mendonça-Previato L; Montero-Lomelí M FEMS Yeast Res; 2008 Dec; 8(8):1245-53. PubMed ID: 18811659 [TBL] [Abstract][Full Text] [Related]
13. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter. Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522 [TBL] [Abstract][Full Text] [Related]
15. Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Howard SC; Deminoff SJ; Herman PK Curr Genet; 2006 Jan; 49(1):1-6. PubMed ID: 16292676 [TBL] [Abstract][Full Text] [Related]
16. Reconstruction of the Biosynthetic Pathway of Santalols under Control of the GAL Regulatory System in Yeast. Zha W; An T; Li T; Zhu J; Gao K; Sun Z; Xu W; Lin P; Zi J ACS Synth Biol; 2020 Feb; 9(2):449-456. PubMed ID: 31940436 [TBL] [Abstract][Full Text] [Related]
17. Galactose metabolism in yeast-structure and regulation of the leloir pathway enzymes and the genes encoding them. Sellick CA; Campbell RN; Reece RJ Int Rev Cell Mol Biol; 2008; 269():111-50. PubMed ID: 18779058 [TBL] [Abstract][Full Text] [Related]
18. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion. Lin X; Zhang CY; Bai XW; Xiao DG J Ind Microbiol Biotechnol; 2015 Jun; 42(6):939-48. PubMed ID: 25877163 [TBL] [Abstract][Full Text] [Related]
19. Improvement of galactose induction system in Saccharomyces cerevisiae. Matsuyama T; Yamanishi M; Takahashi H J Biosci Bioeng; 2011 Feb; 111(2):175-7. PubMed ID: 20947423 [TBL] [Abstract][Full Text] [Related]
20. Towards enhanced galactose utilization by Lactococcus lactis. Neves AR; Pool WA; Solopova A; Kok J; Santos H; Kuipers OP Appl Environ Microbiol; 2010 Nov; 76(21):7048-60. PubMed ID: 20817811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]