These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16269683)

  • 1. Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere.
    Mirleau P; Wogelius R; Smith A; Kertesz MA
    Appl Environ Microbiol; 2005 Nov; 71(11):6571-7. PubMed ID: 16269683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of soil microbes in plant sulphur nutrition.
    Kertesz MA; Mirleau P
    J Exp Bot; 2004 Aug; 55(404):1939-45. PubMed ID: 15181108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene.
    Schmalenberger A; Kertesz MA
    Environ Microbiol; 2007 Feb; 9(2):535-45. PubMed ID: 17222151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
    Kahnert A; Vermeij P; Wietek C; James P; Leisinger T; Kertesz MA
    J Bacteriol; 2000 May; 182(10):2869-78. PubMed ID: 10781557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida.
    Kahnert A; Mirleau P; Wait R; Kertesz MA
    Environ Microbiol; 2002 Apr; 4(4):225-37. PubMed ID: 12010129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities.
    Schmalenberger A; Hodge S; Hawkesford MJ; Kertesz MA
    FEMS Microbiol Ecol; 2009 Jan; 67(1):140-50. PubMed ID: 19120463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat.
    Glandorf DC; Verheggen P; Jansen T; Jorritsma JW; Smit E; Leeflang P; Wernars K; Thomashow LS; Laureijs E; Thomas-Oates JE; Bakker PA; van Loon LC
    Appl Environ Microbiol; 2001 Aug; 67(8):3371-8. PubMed ID: 11472906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field and soil microcosm studies on the survival and conjugation of a Pseudomonas putida strain bearing a recombinant plasmid, pADPTel.
    Hirkala DL; Germida JJ
    Can J Microbiol; 2004 Aug; 50(8):595-604. PubMed ID: 15467785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313.
    Vermeij P; Wietek C; Kahnert A; Wüest T; Kertesz MA
    Mol Microbiol; 1999 Jun; 32(5):913-26. PubMed ID: 10361295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes.
    Schmalenberger A; Hodge S; Bryant A; Hawkesford MJ; Singh BK; Kertesz MA
    Environ Microbiol; 2008 Jun; 10(6):1486-500. PubMed ID: 18279342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The versatility of Pseudomonas putida in the rhizosphere environment.
    Molina L; Segura A; Duque E; Ramos JL
    Adv Appl Microbiol; 2020; 110():149-180. PubMed ID: 32386604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria.
    Kertesz MA
    FEMS Microbiol Rev; 2000 Apr; 24(2):135-75. PubMed ID: 10717312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum.
    Zuluaga MYA; Lima Milani KM; Azeredo Gonçalves LS; Martinez de Oliveira AL
    PLoS One; 2020; 15(1):e0227422. PubMed ID: 31923250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community.
    Götz M; Gomes NC; Dratwinski A; Costa R; Berg G; Peixoto R; Mendonça-Hagler L; Smalla K
    FEMS Microbiol Ecol; 2006 May; 56(2):207-18. PubMed ID: 16629751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates.
    Ramos C; Mølbak L; Molin S
    Appl Environ Microbiol; 2000 Feb; 66(2):801-9. PubMed ID: 10653754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts.
    Eltlbany N; Baklawa M; Ding GC; Nassal D; Weber N; Kandeler E; Neumann G; Ludewig U; van Overbeek L; Smalla K
    FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31386159
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Sun J; Li S; Fan C; Cui K; Tan H; Qiao L; Lu L
    Microbiol Spectr; 2022 Jun; 10(3):e0035822. PubMed ID: 35665438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants.
    Fernández M; Conde S; Duque E; Ramos JL
    Microb Biotechnol; 2013 May; 6(3):307-13. PubMed ID: 23433036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato Plants.
    Schmidt JE; Vannette RL; Igwe A; Blundell R; Casteel CL; Gaudin ACM
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health.
    Lee SM; Thapa Magar R; Jung MK; Kong HG; Song JY; Kwon JH; Choi M; Lee HJ; Lee SY; Khan R; Kim JF; Lee SW
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38952008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.