These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16269722)

  • 21. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples.
    Kuhn RC; Oshima KH
    Can J Microbiol; 2002 Jun; 48(6):542-9. PubMed ID: 12166681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal effect of the water purifier for home use against Cryptosporidium parvum oocysts.
    Matsui T; Kajima J; Fujino T
    J Vet Med Sci; 2004 Aug; 66(8):941-3. PubMed ID: 15353844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of particles on the recovery of cryptosporidium oocysts from source water samples of various turbidities.
    Feng YY; Ong SL; Hu JY; Song LF; Tan XL; Ng WJ
    Appl Environ Microbiol; 2003 Apr; 69(4):1898-903. PubMed ID: 12676662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment.
    Hijnen WA; Suylen GM; Bahlman JA; Brouwer-Hanzens A; Medema GJ
    Water Res; 2010 Feb; 44(4):1224-34. PubMed ID: 19892384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water.
    Ikner LA; Soto-Beltran M; Bright KR
    Appl Environ Microbiol; 2011 May; 77(10):3500-6. PubMed ID: 21441329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elimination of viruses, phages, bacteria and Cryptosporidium by a new generation Aquaguard point-of-use water treatment unit.
    Grabow WO; Clay CG; Dhaliwal W; Vrey MA; Müller EE
    Zentralbl Hyg Umweltmed; 1999 Sep; 202(5):399-410. PubMed ID: 10546330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems.
    Winona LJ; Ommani AW; Olszewski J; Nuzzo JB; Oshima KH
    Can J Microbiol; 2001 Nov; 47(11):1033-41. PubMed ID: 11766052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Virus Reduction by Ultrafiltration with Coagulation-Sedimentation in Water Reclamation.
    Lee S; Hata A; Yamashita N; Tanaka H
    Food Environ Virol; 2017 Dec; 9(4):453-463. PubMed ID: 28455611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water.
    Gibson KE; Schwab KJ
    Appl Environ Microbiol; 2011 Jan; 77(1):385-91. PubMed ID: 21075885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated concentration and recovery of micro-organisms from drinking water using dead-end ultrafiltration.
    Kearns EA; Magaña S; Lim DV
    J Appl Microbiol; 2008 Aug; 105(2):432-42. PubMed ID: 18298529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved virus concentration methods for wash waters from decontamination of permeable and non-permeable surfaces.
    Hurst BN; Korajkic A; Pemberton A; McMinn BR
    J Virol Methods; 2023 Dec; 322():114826. PubMed ID: 37778537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa.
    Gonzales-Gustavson E; Cárdenas-Youngs Y; Calvo M; da Silva MF; Hundesa A; Amorós I; Moreno Y; Moreno-Mesonero L; Rosell R; Ganges L; Araujo R; Girones R
    J Microbiol Methods; 2017 Mar; 134():46-53. PubMed ID: 28093213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.
    Fontaine M; Guillot E
    J Microbiol Methods; 2003 Jul; 54(1):29-36. PubMed ID: 12732419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bromine and Chlorine Disinfection of
    Coleman CK; Kim J; Bailey ES; Abebe LS; Brown J; Simmons OD; Sobsey MD
    Environ Sci Technol; 2023 Nov; 57(47):18744-18753. PubMed ID: 37220325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hollow-fiber ultrafiltration for the concentration and simultaneous recovery of multiple pathogens in contaminated foods.
    Kim HY; Park HJ; Ko G
    J Food Prot; 2009 Dec; 72(12):2547-52. PubMed ID: 20003737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of traditional and molecular analytical methods for detecting biological agents in raw and drinking water following ultrafiltration.
    Francy DS; Bushon RN; Brady AM; Bertke EE; Kephart CM; Likirdopulos CA; Mailot BE; Schaefer FW; Lindquist HD
    J Appl Microbiol; 2009 Nov; 107(5):1479-91. PubMed ID: 19426268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of dead-end ultrafiltration for the detection and quantification of microbial indicators and pathogens in the drinking water treatment processes.
    Pascual-Benito M; Emiliano P; Casas-Mangas R; Dacal-Rodríguez C; Gracenea M; Araujo R; Valero F; García-Aljaro C; Lucena F
    Int J Hyg Environ Health; 2020 Sep; 230():113628. PubMed ID: 33038613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites.
    Quintero-Betancourt W; Peele ER; Rose JB
    J Microbiol Methods; 2002 May; 49(3):209-24. PubMed ID: 11869786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water.
    Shepherd KM; Wyn-Jones AP
    Appl Environ Microbiol; 1996 Apr; 62(4):1317-22. PubMed ID: 8919791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer.
    Harvey RW; Metge DW; Mohanram A; Gao X; Chorover J
    Environ Sci Technol; 2011 Apr; 45(8):3252-9. PubMed ID: 21275400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.