These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16269756)

  • 1. Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.
    Senko JM; Dewers TA; Krumholz LR
    Appl Environ Microbiol; 2005 Nov; 71(11):7172-7. PubMed ID: 16269756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated anaerobic microbial redox cycling of iron.
    Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE
    Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.
    Liu T; Li X; Zhang W; Hu M; Li F
    J Colloid Interface Sci; 2014 Jun; 423():25-32. PubMed ID: 24703664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microaerophilic, Fe(II)-dependent growth and Fe(II) oxidation by a Dechlorospirillum species.
    Picardal FW; Zaybak Z; Chakraborty A; Schieber J; Szewzyk U
    FEMS Microbiol Lett; 2011 Jun; 319(1):51-7. PubMed ID: 21410510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.
    Park S; Kim DH; Lee JH; Hur HG
    FEMS Microbiol Ecol; 2014 Oct; 90(1):68-77. PubMed ID: 24965827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate controls on iron and arsenic in an urban lake.
    Senn DB; Hemond HF
    Science; 2002 Jun; 296(5577):2373-6. PubMed ID: 12089437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
    Weber KA; Pollock J; Cole KA; O'Connor SM; Achenbach LA; Coates JD
    Appl Environ Microbiol; 2006 Jan; 72(1):686-94. PubMed ID: 16391108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation.
    Senko JM; Mohamed Y; Dewers TA; Krumholz LR
    Environ Sci Technol; 2005 Apr; 39(8):2529-36. PubMed ID: 15884345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe(II)EDTA-NO reduction coupled with Fe(II)EDTA oxidation by a nitrate- and Fe(III)-reducing bacterium.
    Dong X; Zhang Y; Zhou J; Chen M; Wang X; Shi Z
    Bioresour Technol; 2013 Jun; 138():339-44. PubMed ID: 23624052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3.
    Kanaparthi D; Pommerenke B; Casper P; Dumont MG
    ISME J; 2013 Aug; 7(8):1582-94. PubMed ID: 23514778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
    Cummings DE; March AW; Bostick B; Spring S; Caccavo F; Fendorf S; Rosenzweig RF
    Appl Environ Microbiol; 2000 Jan; 66(1):154-62. PubMed ID: 10618217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.
    Gauger T; Konhauser K; Kappler A
    Astrobiology; 2016 Apr; 16(4):301-10. PubMed ID: 27027418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.
    Muehe EM; Gerhardt S; Schink B; Kappler A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
    Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A
    Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.