These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 16269807)
1. Impact of bacterial NO3(-) transport on sediment biogeochemistry. Sayama M; Risgaard-Petersen N; Nielsen LP; Fossing H; Christensen PB Appl Environ Microbiol; 2005 Nov; 71(11):7575-7. PubMed ID: 16269807 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Kamp A; Stief P; Schulz-Vogt HN Appl Environ Microbiol; 2006 Jul; 72(7):4755-60. PubMed ID: 16820468 [TBL] [Abstract][Full Text] [Related]
3. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Mussmann M; Schulz HN; Strotmann B; Kjaer T; Nielsen LP; Rosselló-Mora RA; Amann RI; Jørgensen BB Environ Microbiol; 2003 Jun; 5(6):523-33. PubMed ID: 12755720 [TBL] [Abstract][Full Text] [Related]
4. Pathways of carbon oxidation in continental margin sediments off central Chile. Thamdrup B; Canfield DE Limnol Oceanogr; 1996 Dec; 41(8):1629-50. PubMed ID: 11540503 [TBL] [Abstract][Full Text] [Related]
5. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. Preisler A; de Beer D; Lichtschlag A; Lavik G; Boetius A; Jørgensen BB ISME J; 2007 Aug; 1(4):341-53. PubMed ID: 18043645 [TBL] [Abstract][Full Text] [Related]
6. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
7. Filamentous Giant Beggiatoaceae from the Guaymas Basin Are Capable of both Denitrification and Dissimilatory Nitrate Reduction to Ammonium. Schutte CA; Teske A; MacGregor BJ; Salman-Carvalho V; Lavik G; Hach P; de Beer D Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802192 [TBL] [Abstract][Full Text] [Related]
11. Mineral cycling and pH gradient related with biological activity under transient anoxic-oxic conditions: effect on P mobility in volcanic lake sediments. Ribeiro DC; Martins G; Nogueira R; Brito AG Environ Sci Technol; 2014 Aug; 48(16):9205-10. PubMed ID: 25084343 [TBL] [Abstract][Full Text] [Related]
12. Large sulfur bacteria and the formation of phosphorite. Schulz HN; Schulz HD Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012 [TBL] [Abstract][Full Text] [Related]
13. Microenvironments and microbial community structure in sediments. Tankéré SP; Bourne DG; Muller FL; Torsvik V Environ Microbiol; 2002 Feb; 4(2):97-105. PubMed ID: 11972619 [TBL] [Abstract][Full Text] [Related]
18. Variation in properties of the sediment following electrokinetic treatments. Touch N; Hibino T; Nakashita S; Nakamoto K Environ Technol; 2017 Feb; 38(3):277-284. PubMed ID: 27218205 [TBL] [Abstract][Full Text] [Related]
19. Enhancement and inhibition of denitrification by fluid-flow and dissolved oxygen flux to stream sediments. O'Connor BL; Hondzo M Environ Sci Technol; 2008 Jan; 42(1):119-25. PubMed ID: 18350885 [TBL] [Abstract][Full Text] [Related]
20. Calcium dynamics in microbialite-forming exopolymer-rich mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Ionescu D; Spitzer S; Reimer A; Schneider D; Daniel R; Reitner J; de Beer D; Arp G Geobiology; 2015 Mar; 13(2):170-80. PubMed ID: 25515845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]