BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16270032)

  • 21. Lipid-mediated, reversible misfolding of a sterol-sensing domain protein.
    Shearer AG; Hampton RY
    EMBO J; 2005 Jan; 24(1):149-59. PubMed ID: 15635451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells.
    Faulkner RA; Nguyen AD; Jo Y; DeBose-Boyd RA
    J Lipid Res; 2013 Apr; 54(4):1011-22. PubMed ID: 23403031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase.
    Johnson BM; DeBose-Boyd RA
    Semin Cell Dev Biol; 2018 Sep; 81():121-128. PubMed ID: 29107682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78.
    Lee JN; Song B; DeBose-Boyd RA; Ye J
    J Biol Chem; 2006 Dec; 281(51):39308-15. PubMed ID: 17043353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three mutations in sterol-sensing domain of SCAP block interaction with insig and render SREBP cleavage insensitive to sterols.
    Yabe D; Xia ZP; Adams CM; Rawson RB
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16672-7. PubMed ID: 12482938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast.
    Hampton RY; Rine J
    J Cell Biol; 1994 Apr; 125(2):299-312. PubMed ID: 8163547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutations within the membrane domain of HMG-CoA reductase confer resistance to sterol-accelerated degradation.
    Lee PC; Nguyen AD; Debose-Boyd RA
    J Lipid Res; 2007 Feb; 48(2):318-27. PubMed ID: 17090658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol.
    Song BL; Javitt NB; DeBose-Boyd RA
    Cell Metab; 2005 Mar; 1(3):179-89. PubMed ID: 16054061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
    Ravid T; Doolman R; Avner R; Harats D; Roitelman J
    J Biol Chem; 2000 Nov; 275(46):35840-7. PubMed ID: 10964918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase.
    Faulkner RA; Yang Y; Tsien J; Qin T; DeBose-Boyd RA
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2318822121. PubMed ID: 38319967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations.
    Koning AJ; Roberts CJ; Wright RL
    Mol Biol Cell; 1996 May; 7(5):769-89. PubMed ID: 8744950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of HMG-CoA reductase in mammals and yeast.
    Burg JS; Espenshade PJ
    Prog Lipid Res; 2011 Oct; 50(4):403-10. PubMed ID: 21801748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8.
    Jo Y; Lee PC; Sguigna PV; DeBose-Boyd RA
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20503-8. PubMed ID: 22143767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Hampton RY; Bhakta H
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12944-8. PubMed ID: 9371780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational analysis of the karmellae-inducing signal in Hmg1p, a yeast HMG-CoA reductase isozyme.
    Profant DA; Roberts CJ; Wright RL
    Yeast; 2000 Jun; 16(9):811-27. PubMed ID: 10861905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual functions of Insig proteins in cholesterol homeostasis.
    Dong XY; Tang SQ; Chen JD
    Lipids Health Dis; 2012 Dec; 11():173. PubMed ID: 23249523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p.
    Cronin SR; Khoury A; Ferry DK; Hampton RY
    J Cell Biol; 2000 Mar; 148(5):915-24. PubMed ID: 10704442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.
    Gardner R; Cronin S; Leader B; Rine J; Hampton R
    Mol Biol Cell; 1998 Sep; 9(9):2611-26. PubMed ID: 9725915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic structure of the gene encoding human 3-hydroxy-3-methyl-glutaryl coenzyme A reductase: comparison of exon/intron organization of sterol-sensing domains among four related genes.
    Nakajima T; Iwaki K; Hamakubo T; Kodama T; Emi M
    J Hum Genet; 2000; 45(5):284-9. PubMed ID: 11043510
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase.
    Garza RM; Sato BK; Hampton RY
    J Biol Chem; 2009 May; 284(22):14710-22. PubMed ID: 19324879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.