BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16270910)

  • 1. Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites.
    Wolschin F; Weckwerth W
    Plant Methods; 2005 Nov; 1(1):9. PubMed ID: 16270910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC).
    Wolschin F; Wienkoop S; Weckwerth W
    Proteomics; 2005 Nov; 5(17):4389-97. PubMed ID: 16222723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.
    Hoehenwarter W; Thomas M; Nukarinen E; Egelhofer V; Röhrig H; Weckwerth W; Conrath U; Beckers GJ
    Mol Cell Proteomics; 2013 Feb; 12(2):369-80. PubMed ID: 23172892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway.
    Wagner V; Ullmann K; Mollwo A; Kaminski M; Mittag M; Kreimer G
    Plant Physiol; 2008 Feb; 146(2):772-88. PubMed ID: 18065559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoprotein Enrichment Combined with Phosphopeptide Enrichment to Identify Putative Phosphoproteins During Defense Response in Arabidopsis thaliana.
    Lassowskat I; Hoehenwarter W; Lee J; Scheel D
    Methods Mol Biol; 2016; 1398():373-83. PubMed ID: 26867639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PAPE (Prefractionation-Assisted Phosphoprotein Enrichment): A Novel Approach for Phosphoproteomic Analysis of Green Tissues from Plants.
    Lassowskat I; Naumann K; Lee J; Scheel D
    Proteomes; 2013 Dec; 1(3):254-274. PubMed ID: 28250405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings.
    Aryal UK; Ross AR; Krochko JE
    PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis.
    Stensballe A; Andersen S; Jensen ON
    Proteomics; 2001 Feb; 1(2):207-22. PubMed ID: 11680868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides.
    Wang B; Wu H; Yan Y; Tang K; Ding CF
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8881. PubMed ID: 32638431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated strategy for identification and relative quantification of site-specific protein phosphorylation using liquid chromatography coupled to MS2/MS3.
    Wolschin F; Lehmann U; Glinski M; Weckwerth W
    Rapid Commun Mass Spectrom; 2005; 19(24):3626-32. PubMed ID: 16287031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry.
    Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG
    Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of smart responsive materials in phosphopeptide and glycopeptide enrichment].
    Zhao Y; Xu W; Jia Q
    Se Pu; 2022 Oct; 40(10):862-871. PubMed ID: 36222249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.
    Aryal UK; Krochko JE; Ross AR
    J Proteome Res; 2012 Jan; 11(1):425-37. PubMed ID: 22092075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Phosphorylated Proteins Using Mass Spectrometry.
    Yu LR; Veenstra TD
    Curr Protein Pept Sci; 2021; 22(2):148-157. PubMed ID: 33231146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing phosphoproteins playing role in tobacco pollen activated in vitro.
    Fíla J; Matros A; Radau S; Zahedi RP; Capková V; Mock HP; Honys D
    Proteomics; 2012 Nov; 12(21):3229-50. PubMed ID: 22976843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.