BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16271279)

  • 1. Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris.
    Rufyikiri G; Wannijn J; Wang L; Thiry Y
    Environ Pollut; 2006 Jun; 141(3):420-7. PubMed ID: 16271279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil.
    Rufyikiri G; Huysmans L; Wannijn J; Van Hees M; Leyval C; Jakobsen I
    Environ Pollut; 2004 Aug; 130(3):427-36. PubMed ID: 15182973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China.
    Chen SB; Zhu YG; Hu QH
    J Environ Radioact; 2005; 82(2):223-36. PubMed ID: 15878419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of pH, organic matter and (226)radium/calcium partitioning in U-mining debris following revegetation with pine trees.
    Thiry Y; Van Hees M
    Sci Total Environ; 2008 Apr; 393(1):111-7. PubMed ID: 18207491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.
    Vandenhove H; Van Hees M; Wannijn J; Wouters K; Wang L
    Environ Pollut; 2007 Jan; 145(2):577-86. PubMed ID: 16781804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants.
    de Boulois HD; Joner EJ; Leyval C; Jakobsen I; Chen BD; Roos P; Thiry Y; Rufyikiri G; Delvaux B; Declerck S
    J Environ Radioact; 2008 May; 99(5):775-84. PubMed ID: 18069098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium distribution and cycling in Scots pine (Pinus sylvestris L.) growing on a revegetated U-mining heap.
    Thiry Y; Schmidt P; Van Hees M; Wannijn J; Van Bree P; Rufyikiri G; Vandenhove H
    J Environ Radioact; 2005; 81(2-3):201-19. PubMed ID: 15795035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area.
    Xiao G; Li T; Zhang X; Yu H; Huang H; Gupta DK
    J Hazard Mater; 2009 Nov; 171(1-3):542-50. PubMed ID: 19608342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.
    Chen B; Zhu YG; Zhang X; Jakobsen I
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings.
    Chen B; Roos P; Zhu YG; Jakobsen I
    J Environ Radioact; 2008 May; 99(5):801-10. PubMed ID: 18061321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.
    Yang SX; Liao B; Li JT; Guo T; Shu WS
    Chemosphere; 2010 Aug; 80(8):852-9. PubMed ID: 20580409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecotechnological approach for consolidation of uranium tailings.
    Soni P; Singh L
    J Environ Sci Eng; 2011 Jul; 53(3):355-64. PubMed ID: 23029938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-monitoring for uranium using stream-side terrestrial plants and macrophytes.
    Caldwell EF; Duff MC; Ferguson CE; Coughlin DP; Hicks RA; Dixon E
    J Environ Monit; 2012 Mar; 14(3):968-76. PubMed ID: 22318309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites.
    Wei CY; Sun X; Wang C; Wang WY
    Environ Pollut; 2006 Jun; 141(3):488-93. PubMed ID: 16236410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of U, Al and Mn in the water-soil-plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health.
    Neves MO; Figueiredo VR; Abreu MM
    Sci Total Environ; 2012 Feb; 416():156-63. PubMed ID: 22178025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and distribution of natural radioactivity in wheat plants from soil.
    Pulhani VA; Dafauti S; Hegde AG; Sharma RM; Mishra UC
    J Environ Radioact; 2005; 79(3):331-46. PubMed ID: 15607519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L.
    Rodríguez PB; Tomé FV; Fernández MP; Lozano JC
    Sci Total Environ; 2006 May; 361(1-3):1-7. PubMed ID: 16182341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter.
    Takeda A; Tsukada H; Takaku Y; Akata N; Hisamatsu S
    J Environ Radioact; 2008 Jun; 99(6):900-11. PubMed ID: 18164108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into the upward transport of uranium-series radionuclides in soils and uptake by plants.
    Pérez-Sánchez D; Thorne MC
    J Radiol Prot; 2014 Sep; 34(3):545-73. PubMed ID: 24984104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical and mineralogical characterization of soil-saprolite cores from a field research site, Tennessee.
    Moon JW; Roh Y; Phelps TJ; Phillips DH; Watson DB; Kim YJ; Brooks SC
    J Environ Qual; 2006; 35(5):1731-41. PubMed ID: 16899744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.