BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 1627142)

  • 21. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer.
    Ellison V; Gerton J; Vincent KA; Brown PO
    J Biol Chem; 1995 Feb; 270(7):3320-6. PubMed ID: 7852418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Requirement for a conserved serine in both processing and joining activities of retroviral integrase.
    Katz RA; Mack JP; Merkel G; Kulkosky J; Ge Z; Leis J; Skalka AM
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6741-5. PubMed ID: 1323118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells.
    Wiskerchen M; Muesing MA
    J Virol; 1995 Jan; 69(1):376-86. PubMed ID: 7983732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein.
    Vink C; Oude Groeneger AM; Plasterk RH
    Nucleic Acids Res; 1993 Mar; 21(6):1419-25. PubMed ID: 8464733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells.
    LaFemina RL; Schneider CL; Robbins HL; Callahan PL; LeGrow K; Roth E; Schleif WA; Emini EA
    J Virol; 1992 Dec; 66(12):7414-9. PubMed ID: 1433523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved residues Pro-109 and Asp-116 are required for interaction of the human immunodeficiency virus type 1 integrase protein with its viral DNA substrate.
    Drelich M; Haenggi M; Mous J
    J Virol; 1993 Aug; 67(8):5041-4. PubMed ID: 8392628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration.
    Taddeo B; Haseltine WA; Farnet CM
    J Virol; 1994 Dec; 68(12):8401-5. PubMed ID: 7966634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates.
    Chow SA; Brown PO
    J Virol; 1994 Jun; 68(6):3896-907. PubMed ID: 8189526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of recombinant HIV-1 integrase on mini-HIV DNA.
    Cherepanov P; Surratt D; Toelen J; Pluymers W; Griffith J; De Clercq E; Debyser Z
    Nucleic Acids Res; 1999 May; 27(10):2202-10. PubMed ID: 10219094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a DNA binding domain in the C-terminus of HIV-1 integrase by deletion mutagenesis.
    Woerner AM; Marcus-Sekura CJ
    Nucleic Acids Res; 1993 Jul; 21(15):3507-11. PubMed ID: 8346030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization.
    Jenkins TM; Engelman A; Ghirlando R; Craigie R
    J Biol Chem; 1996 Mar; 271(13):7712-8. PubMed ID: 8631811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of manganese in promoting multimerization and assembly of human immunodeficiency virus type 1 integrase as a catalytically active complex on immobilized long terminal repeat substrates.
    Wolfe AL; Felock PJ; Hastings JC; Blau CU; Hazuda DJ
    J Virol; 1996 Mar; 70(3):1424-32. PubMed ID: 8627659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of human immunodeficiency virus DNA: adduct interference analysis of required DNA sites.
    Bushman FD; Craigie R
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3458-62. PubMed ID: 1533044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences.
    Bushman FD
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9233-7. PubMed ID: 7937746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the forward and reverse integration reactions of the Moloney murine leukemia virus integrase protein purified from Escherichia coli.
    Jonsson CB; Donzella GA; Roth MJ
    J Biol Chem; 1993 Jan; 268(2):1462-9. PubMed ID: 8419346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of substrate structure on disintegration activity of Moloney murine leukemia virus integrase.
    Donzella GA; Jonsson CB; Roth MJ
    J Virol; 1993 Dec; 67(12):7077-87. PubMed ID: 8230431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core.
    Pruss D; Bushman FD; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5913-7. PubMed ID: 8016088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity.
    Sherman PA; Fyfe JA
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5119-23. PubMed ID: 2164223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro activities of purified visna virus integrase.
    Katzman M; Sudol M
    J Virol; 1994 Jun; 68(6):3558-69. PubMed ID: 8189495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding.
    Bushman FD; Engelman A; Palmer I; Wingfield P; Craigie R
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3428-32. PubMed ID: 8386373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.