These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 16271446)
1. Pharmacogenetics of irinotecan metabolism and transport: an update. Smith NF; Figg WD; Sparreboom A Toxicol In Vitro; 2006 Mar; 20(2):163-75. PubMed ID: 16271446 [TBL] [Abstract][Full Text] [Related]
3. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Mathijssen RH; van Alphen RJ; Verweij J; Loos WJ; Nooter K; Stoter G; Sparreboom A Clin Cancer Res; 2001 Aug; 7(8):2182-94. PubMed ID: 11489791 [TBL] [Abstract][Full Text] [Related]
4. Role for drug transporters beyond tumor resistance: hepatic functional imaging and genotyping of multidrug resistance transporters for the prediction of irinotecan toxicity. Kroetz DL J Clin Oncol; 2006 Sep; 24(26):4225-7. PubMed ID: 16895999 [No Abstract] [Full Text] [Related]
5. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Han JY; Lim HS; Yoo YK; Shin ES; Park YH; Lee SY; Lee JE; Lee DH; Kim HT; Lee JS Cancer; 2007 Jul; 110(1):138-47. PubMed ID: 17534875 [TBL] [Abstract][Full Text] [Related]
6. Effect of P-glycoprotein modulator, cyclosporin A, on the gastrointestinal excretion of irinotecan and its metabolite SN-38 in rats. Arimori K; Kuroki N; Hidaka M; Iwakiri T; Yamsaki K; Okumura M; Ono H; Takamura N; Kikuchi M; Nakano M Pharm Res; 2003 Jun; 20(6):910-7. PubMed ID: 12817897 [TBL] [Abstract][Full Text] [Related]
7. An overview of the recent progress in irinotecan pharmacogenetics. Fujiwara Y; Minami H Pharmacogenomics; 2010 Mar; 11(3):391-406. PubMed ID: 20235794 [TBL] [Abstract][Full Text] [Related]
8. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. de Jong FA; Marsh S; Mathijssen RH; King C; Verweij J; Sparreboom A; McLeod HL Clin Cancer Res; 2004 Sep; 10(17):5889-94. PubMed ID: 15355921 [TBL] [Abstract][Full Text] [Related]
9. Chemosensitivity determinants of irinotecan hydrochloride in hepatocellular carcinoma cell lines. Takahata T; Ookawa K; Suto K; Tanaka M; Yano H; Nakashima O; Kojiro M; Tamura Y; Tateishi T; Sakata Y; Fukuda S Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):399-407. PubMed ID: 18248513 [TBL] [Abstract][Full Text] [Related]
10. Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Zhou Q; Sparreboom A; Tan EH; Cheung YB; Lee A; Poon D; Lee EJ; Chowbay B Br J Clin Pharmacol; 2005 Apr; 59(4):415-24. PubMed ID: 15801936 [TBL] [Abstract][Full Text] [Related]
11. Role of Toll-like receptor 4 in drug-drug interaction between paclitaxel and irinotecan in vitro. Mallick P; Basu S; Moorthy B; Ghose R Toxicol In Vitro; 2017 Jun; 41():75-82. PubMed ID: 28242239 [TBL] [Abstract][Full Text] [Related]
12. Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Lin F; Marchetti S; Pluim D; Iusuf D; Mazzanti R; Schellens JH; Beijnen JH; van Tellingen O Clin Cancer Res; 2013 Apr; 19(8):2084-95. PubMed ID: 23461902 [TBL] [Abstract][Full Text] [Related]
13. Effect of drug metabolizing enzymes and transporters in Thai colorectal cancer patients treated with irinotecan-based chemotherapy. Atasilp C; Chansriwong P; Sirachainan E; Reungwetwattana T; Sirilerttrakul S; Chamnanphon M; Puangpetch A; Sukasem C Sci Rep; 2020 Aug; 10(1):13486. PubMed ID: 32778670 [TBL] [Abstract][Full Text] [Related]
14. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Sugiyama Y; Kato Y; Chu X Cancer Chemother Pharmacol; 1998; 42 Suppl():S44-9. PubMed ID: 9750028 [TBL] [Abstract][Full Text] [Related]
15. Clinical pharmacogenetics and potential application in personalized medicine. Zhou SF; Di YM; Chan E; Du YM; Chow VD; Xue CC; Lai X; Wang JC; Li CG; Tian M; Duan W Curr Drug Metab; 2008 Oct; 9(8):738-84. PubMed ID: 18855611 [TBL] [Abstract][Full Text] [Related]
16. Pharmacogenetics of irinotecan disposition and toxicity: a review. Fujita K; Sparreboom A Curr Clin Pharmacol; 2010 Aug; 5(3):209-17. PubMed ID: 20406168 [TBL] [Abstract][Full Text] [Related]
17. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Chew SC; Singh O; Chen X; Ramasamy RD; Kulkarni T; Lee EJ; Tan EH; Lim WT; Chowbay B Cancer Chemother Pharmacol; 2011 Jun; 67(6):1471-8. PubMed ID: 21468756 [TBL] [Abstract][Full Text] [Related]
18. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Luo FR; Paranjpe PV; Guo A; Rubin E; Sinko P Drug Metab Dispos; 2002 Jul; 30(7):763-70. PubMed ID: 12065434 [TBL] [Abstract][Full Text] [Related]
19. Pharmacogenomics of MRP transporters (ABCC1-5) and BCRP (ABCG2). Gradhand U; Kim RB Drug Metab Rev; 2008; 40(2):317-54. PubMed ID: 18464048 [TBL] [Abstract][Full Text] [Related]
20. Association Between ABCG2, ABCB1, ABCC2 Efflux Transporter Single-Nucleotide Variants and Irinotecan Adverse Effects in Patients With Colorectal Cancer: A Real-Life Study. Barnett-Griness O; Rennert G; Lejbkowicz F; Pinchev M; Saliba W; Gronich N Clin Pharmacol Ther; 2023 Mar; 113(3):704-711. PubMed ID: 36537755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]