These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation. DiZio P; Lackner JR J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105 [TBL] [Abstract][Full Text] [Related]
5. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment. Bourdin C; Bringoux L; Gauthier GM; Vercher JL Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935 [TBL] [Abstract][Full Text] [Related]
6. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. Dizio P; Lackner JR J Neurophysiol; 1995 Oct; 74(4):1787-92. PubMed ID: 8989414 [TBL] [Abstract][Full Text] [Related]
7. Sensory motor coordination in an artificial gravity environment. Lackner JR; DiZio P J Gravit Physiol; 1997 Jul; 4(2):P9-12. PubMed ID: 11540711 [TBL] [Abstract][Full Text] [Related]
8. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements. Lackner JR; Dizio P J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449 [TBL] [Abstract][Full Text] [Related]
9. Reaching during virtual rotation: context specific compensations for expected coriolis forces. Cohn JV; DiZio P; Lackner JR J Neurophysiol; 2000 Jun; 83(6):3230-40. PubMed ID: 10848543 [TBL] [Abstract][Full Text] [Related]
10. Sequence, time, or state representation: how does the motor control system adapt to variable environments? Karniel A; Mussa-Ivaldi FA Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029 [TBL] [Abstract][Full Text] [Related]
11. Rapid adaptation to Coriolis force perturbations of arm trajectory. Lackner JR; Dizio P J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013 [TBL] [Abstract][Full Text] [Related]
12. Primitives for motor adaptation reflect correlated neural tuning to position and velocity. Sing GC; Joiner WM; Nanayakkara T; Brayanov JB; Smith MA Neuron; 2009 Nov; 64(4):575-89. PubMed ID: 19945398 [TBL] [Abstract][Full Text] [Related]
13. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field. Lai EJ; Hodgson AJ; Milner TE Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384 [TBL] [Abstract][Full Text] [Related]
14. The role of reafference in recalibration of limb movement control and locomotion. Lackner JR; DiZio P J Vestib Res; 1997; 7(4):303-10. PubMed ID: 9218244 [TBL] [Abstract][Full Text] [Related]
15. Rapid adaptation to Coriolis force perturbations of voluntary body sway. Bakshi A; DiZio P; Lackner JR J Neurophysiol; 2019 Jun; 121(6):2028-2041. PubMed ID: 30943090 [TBL] [Abstract][Full Text] [Related]
16. Sensorimotor adaptation to inertial forces in a multi-force environment does not depend on the number of targets: indirect validation of the altered-proprioception hypothesis. Bourdin C; Bock O Neurosci Lett; 2006 Nov; 408(3):173-7. PubMed ID: 17030093 [TBL] [Abstract][Full Text] [Related]
17. Limb motion dictates how motor learning arises from arbitrary environmental dynamics. Sing GC; Orozco SP; Smith MA J Neurophysiol; 2013 May; 109(10):2466-82. PubMed ID: 23365184 [TBL] [Abstract][Full Text] [Related]
18. Scaling down motor memories: de-adaptation after motor learning. Davidson PR; Wolpert DM Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303 [TBL] [Abstract][Full Text] [Related]
19. Human adaptation to interaction forces in visuo-motor coordination. Huang FC; Gillespie RB; Kuo AD IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):390-7. PubMed ID: 17009499 [TBL] [Abstract][Full Text] [Related]
20. Limb stiffness is modulated with spatial accuracy requirements during movement in the absence of destabilizing forces. Wong J; Wilson ET; Malfait N; Gribble PL J Neurophysiol; 2009 Mar; 101(3):1542-9. PubMed ID: 19144739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]