These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 16271466)
1. Computational motor control in humans and robots. Schaal S; Schweighofer N Curr Opin Neurobiol; 2005 Dec; 15(6):675-82. PubMed ID: 16271466 [TBL] [Abstract][Full Text] [Related]
2. Computational principles of movement neuroscience. Wolpert DM; Ghahramani Z Nat Neurosci; 2000 Nov; 3 Suppl():1212-7. PubMed ID: 11127840 [TBL] [Abstract][Full Text] [Related]
3. Reinforcement learning of motor skills with policy gradients. Peters J; Schaal S Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830 [TBL] [Abstract][Full Text] [Related]
4. Computational neuroscience. Building blocks of movement. Ghahramani Z Nature; 2000 Oct; 407(6805):682-3. PubMed ID: 11048700 [No Abstract] [Full Text] [Related]
6. The contribution of active body movement to visual development in evolutionary robots. Suzuki M; Floreano D; Di Paolo EA Neural Netw; 2005; 18(5-6):656-65. PubMed ID: 16112555 [TBL] [Abstract][Full Text] [Related]
7. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning. Uchibe E; Doya K Neural Netw; 2008 Dec; 21(10):1447-55. PubMed ID: 19013054 [TBL] [Abstract][Full Text] [Related]
8. Neural averaging in motor learning. Mattar AA; Ostry DJ J Neurophysiol; 2007 Jan; 97(1):220-8. PubMed ID: 17021025 [TBL] [Abstract][Full Text] [Related]
9. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two. Zhang J Neural Netw; 2009 Apr; 22(3):220-8. PubMed ID: 19386469 [TBL] [Abstract][Full Text] [Related]
10. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056 [TBL] [Abstract][Full Text] [Related]
11. Impedance learning for robotic contact tasks using natural actor-critic algorithm. Kim B; Park J; Park S; Kang S IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):433-43. PubMed ID: 19696001 [TBL] [Abstract][Full Text] [Related]
12. The dynamic neural field approach to cognitive robotics. Erlhagen W; Bicho E J Neural Eng; 2006 Sep; 3(3):R36-54. PubMed ID: 16921201 [TBL] [Abstract][Full Text] [Related]
13. Feed-forward associative learning for volitional movement control. Fujita M Neurosci Res; 2005 Jun; 52(2):153-65. PubMed ID: 15893576 [TBL] [Abstract][Full Text] [Related]
14. Emergence and development of embodied cognition: a constructivist approach using robots. Kuniyoshi Y; Yorozu Y; Suzuki S; Sangawa S; Ohmura Y; Terada K; Nagakubo A Prog Brain Res; 2007; 164():425-45. PubMed ID: 17920445 [TBL] [Abstract][Full Text] [Related]
15. Central pattern generators for locomotion control in animals and robots: a review. Ijspeert AJ Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958 [TBL] [Abstract][Full Text] [Related]
16. Controlling precise movement with stochastic signals. Rossoni E; Kang J; Feng J Biol Cybern; 2010 May; 102(5):441-50. PubMed ID: 20306201 [TBL] [Abstract][Full Text] [Related]
17. Computational approaches to motor control and their potential role for interpreting motor dysfunction. Scott SH; Norman KE Curr Opin Neurol; 2003 Dec; 16(6):693-8. PubMed ID: 14624078 [TBL] [Abstract][Full Text] [Related]
18. Bayesian population decoding of motor cortical activity using a Kalman filter. Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382 [TBL] [Abstract][Full Text] [Related]
19. Agent-based brain modeling by means of hierarchical cooperative coevolution. Maniadakis M; Trahanias P Artif Life; 2009; 15(3):293-336. PubMed ID: 19239349 [TBL] [Abstract][Full Text] [Related]
20. Efficient reinforcement learning: computational theories, neuroscience and robotics. Kawato M; Samejima K Curr Opin Neurobiol; 2007 Apr; 17(2):205-12. PubMed ID: 17374483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]