BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16271595)

  • 1. The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings.
    Pain MT; Challis JH
    J Biomech; 2006; 39(1):119-24. PubMed ID: 16271595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings.
    Gittoes MJ; Brewin MA; Kerwin DG
    Hum Mov Sci; 2006 Dec; 25(6):775-87. PubMed ID: 16879889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of simulation model complexity on the estimation of internal loading in gymnastics landings.
    Mills C; Pain MT; Yeadon MR
    J Biomech; 2008; 41(3):620-8. PubMed ID: 18005975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing ground reaction forces in gymnastics' landings may increase internal loading.
    Mills C; Pain MT; Yeadon MR
    J Biomech; 2009 Apr; 42(6):671-8. PubMed ID: 19281989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of impact dynamics: wobbling mass model versus rigid body models.
    Gruber K; Ruder H; Denoth J; Schneider K
    J Biomech; 1998 May; 31(5):439-44. PubMed ID: 9727341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protocol for monitoring soft tissue motion under compression garments during drop landings.
    Mills C; Scurr J; Wood L
    J Biomech; 2011 Jun; 44(9):1821-3. PubMed ID: 21549382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving joint torque calculations: optimization-based inverse dynamics to reduce the effect of motion errors.
    Riemer R; Hsiao-Wecksler ET
    J Biomech; 2008; 41(7):1503-9. PubMed ID: 18396292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing.
    Kernozek TW; Ragan RJ
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1279-86. PubMed ID: 18790553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of muscle loading and joint contact forces during the rock step in Irish dance.
    Shippen JM; May B
    J Dance Med Sci; 2010; 14(1):11-8. PubMed ID: 20214850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of landing height on frontal plane kinematics, kinetics and energy dissipation at lower extremity joints.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2009 Aug; 42(12):1967-73. PubMed ID: 19501826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics.
    Langenderfer JE; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2008 Feb; 130(1):014502. PubMed ID: 18298193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of optimization constraints in uneven parallel bar dismount swing simulations.
    Sheets AL; Hubbard M
    J Biomech; 2009 Aug; 42(11):1685-91. PubMed ID: 19457485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the muscle force distribution in ballistic motion based on a multibody methodology.
    Czaplicki A; Silva M; Ambrósio J; Jesus O; Abrantes J
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):45-54. PubMed ID: 16880156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.