These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 1627175)

  • 1. Enzymatic reduction of shogaol: a novel biotransformation pathway for the alpha,beta-unsaturated ketone system.
    Surh YJ; Lee SS
    Biochem Int; 1992 Jun; 27(1):179-87. PubMed ID: 1627175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic reduction of xenobiotic alpha,beta-unsaturated ketones: formation of allyl alcohol metabolites from shogaol and dehydroparadol.
    Surh YJ; Lee SS
    Res Commun Chem Pathol Pharmacol; 1994 Apr; 84(1):53-61. PubMed ID: 8042009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of [6]-shogaol in mice and in cancer cells.
    Chen H; Lv L; Soroka D; Warin RF; Parks TA; Hu Y; Zhu Y; Chen X; Sang S
    Drug Metab Dispos; 2012 Apr; 40(4):742-53. PubMed ID: 22246389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production.
    Jolad SD; Lantz RC; Chen GJ; Bates RB; Timmermann BN
    Phytochemistry; 2005 Jul; 66(13):1614-35. PubMed ID: 15996695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids.
    Bhattarai S; Tran VH; Duke CC
    J Pharm Biomed Anal; 2007 Nov; 45(4):648-53. PubMed ID: 17706909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.
    Chen H; Soroka D; Zhu Y; Sang S
    Mol Nutr Food Res; 2013 May; 57(5):865-76. PubMed ID: 23322474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence, biological activity and metabolism of 6-shogaol.
    Kou X; Wang X; Ji R; Liu L; Qiao Y; Lou Z; Ma C; Li S; Wang H; Ho CT
    Food Funct; 2018 Mar; 9(3):1310-1327. PubMed ID: 29417118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of lovastatin. I. Structure elucidation of in vitro and in vivo metabolites in the rat and mouse.
    Vyas KP; Kari PH; Pitzenberger SM; Halpin RA; Ramjit HG; Arison B; Murphy JS; Hoffman WF; Schwartz MS; Ulm EH
    Drug Metab Dispos; 1990; 18(2):203-11. PubMed ID: 1971574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymic reduction of [6]-gingerol, a major pungent principle of ginger, in the cell-free preparation of rat liver.
    Surh YJ; Lee SS
    Life Sci; 1994; 54(19):PL321-6. PubMed ID: 8190011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage.
    Ishiguro K; Ando T; Watanabe O; Goto H
    FEBS Lett; 2008 Oct; 582(23-24):3531-6. PubMed ID: 18805415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of the novel antihypertensive drug naftopidil.
    Niebch G; Locher M; Peter G; Borbe HO
    Arzneimittelforschung; 1991 Oct; 41(10):1027-32. PubMed ID: 1665973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive metabolism of furazolidone by Escherichia coli and rat liver in vitro.
    Abraham RT; Knapp JE; Minnigh MB; Wong LK; Zemaitis MA; Alvin JD
    Drug Metab Dispos; 1984; 12(6):732-41. PubMed ID: 6150823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of 16 alpha, 17 alpha-epoxy-4-androsten-3-one in rat liver microsomes.
    Disse B; Siekmann L; Breuer H
    Acta Endocrinol (Copenh); 1980 Sep; 95(1):58-66. PubMed ID: 7456973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturation of an alpha, beta-unsaturated ketone: a novel xenobiotic biotransformation in mammals.
    Lindstrom TD; Whitaker GW
    Xenobiotica; 1984 Jul; 14(7):503-8. PubMed ID: 6506762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of 14C-3-trifluoromethyl-alpha-ethylbenzhydrol in rats.
    Ledniczky M; Szinai I; Ujszászi K; Holly S; Kemény V; Mády G; Otvös L
    Arzneimittelforschung; 1978; 28(4):673-7. PubMed ID: 581946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the metabolites of erythro-9-(2-hydroxy-3-nonyl)hypoxanthine from laboratory animals.
    Pfadenhauer EH; Bankert CS; Jensen J; Jones CE; Jenkins EE; McCloskey JA
    Drug Metab Dispos; 1984; 12(3):280-4. PubMed ID: 6145553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes.
    Chen TH; Kuslikis BI; Braselton WE
    Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of antifertility steroids. The in virto metabolism of chlormadinone acetate.
    Handy RW; Palmer KH; Wall ME; Piantadosi C
    Drug Metab Dispos; 1974; 2(3):214-20. PubMed ID: 4137282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of lovastatin by rat and human liver microsomes in vitro.
    Greenspan MD; Yudkovitz JB; Alberts AW; Argenbright LS; Arison BH; Smith JL
    Drug Metab Dispos; 1988; 16(5):678-82. PubMed ID: 2906589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of aliphatic formamides: metabolites of (+-)-N-methyl-N-(1-methyl-3,3-diphenylpropyl) formamide in rats.
    Slatter JG; Mutlib AE; Abbott FS
    Biomed Environ Mass Spectrom; 1989 Sep; 18(9):690-701. PubMed ID: 2790257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.