These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16271824)

  • 41. Signal amplification between Gbetagamma release and PI3Kgamma-mediated PI(3,4,5)P3 formation monitored by a fluorescent Gbetagamma biosensor protein and repetitive two component total internal reflection/fluorescence redistribution after photobleaching analysis.
    Tannert A; Voigt P; Burgold S; Tannert S; Schaefer M
    Biochemistry; 2008 Oct; 47(43):11239-50. PubMed ID: 18831540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FRAP analysis of photosynthetic membranes.
    Mullineaux CW
    J Exp Bot; 2004 May; 55(400):1207-11. PubMed ID: 15020635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments.
    Rapsomaniki MA; Cinquemani E; Giakoumakis NN; Kotsantis P; Lygeros J; Lygerou Z
    Bioinformatics; 2015 Feb; 31(3):355-62. PubMed ID: 25273108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifiability of models for intramolecular two-state excited-state processes with added quencher and coupled species-dependent rotational diffusion.
    Boens N; Novikov E; Szubiakowski JP; Ameloot M
    J Phys Chem A; 2005 Dec; 109(51):11655-64. PubMed ID: 16366614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching.
    Adkins EM; Samuvel DJ; Fog JU; Eriksen J; Jayanthi LD; Vaegter CB; Ramamoorthy S; Gether U
    Biochemistry; 2007 Sep; 46(37):10484-97. PubMed ID: 17711354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope.
    Seiffert S; Oppermann W
    J Microsc; 2005 Oct; 220(Pt 1):20-30. PubMed ID: 16269060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence-based methods to image palmitoylated proteins.
    Kenworthy AK
    Methods; 2006 Oct; 40(2):198-205. PubMed ID: 17012033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FRAP beam-size analysis to measure palmitoylation-dependent membrane association dynamics and microdomain partitioning of Ras proteins.
    Henis YI; Rotblat B; Kloog Y
    Methods; 2006 Oct; 40(2):183-90. PubMed ID: 17012031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Live imaging of synapse development and measuring protein dynamics using two-color fluorescence recovery after photo-bleaching at Drosophila synapses.
    Füger P; Behrends LB; Mertel S; Sigrist SJ; Rasse TM
    Nat Protoc; 2007; 2(12):3285-98. PubMed ID: 18079729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A steady state mathematical model for stepwise "slow-binding" reversible enzyme inhibition.
    Kuzmic P
    Anal Biochem; 2008 Sep; 380(1):5-12. PubMed ID: 18206642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-site transcription rates through fitting of ensemble-averaged data from fluorescence recovery after photobleaching: a fat-tailed distribution.
    Rosenfeld L; Kepten E; Yunger S; Shav-Tal Y; Garini Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032715. PubMed ID: 26465506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study.
    Abbaci M; Barberi-Heyob M; Stines JR; Blondel W; Dumas D; Guillemin F; Didelon J
    Biotechnol J; 2007 Jan; 2(1):50-61. PubMed ID: 17225250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Active Transport by Fluorescence Recovery after Photobleaching.
    Ciocanel MV; Kreiling JA; Gagnon JA; Mowry KL; Sandstede B
    Biophys J; 2017 Apr; 112(8):1714-1725. PubMed ID: 28445762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FRAP analysis: accounting for bleaching during image capture.
    Wu J; Shekhar N; Lele PP; Lele TP
    PLoS One; 2012; 7(8):e42854. PubMed ID: 22912750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Validation of Normalizations, Scaling, and Photofading Corrections for FRAP Data Analysis.
    Kang M; Andreani M; Kenworthy AK
    PLoS One; 2015; 10(5):e0127966. PubMed ID: 26017223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence recovery under decaying photobleaching irradiation: concept and experiment.
    Glazachev YI; Khramtsov VV
    J Fluoresc; 2006 Nov; 16(6):773-81. PubMed ID: 17004134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice.
    Lorén N; Hagman J; Jonasson JK; Deschout H; Bernin D; Cella-Zanacchi F; Diaspro A; McNally JG; Ameloot M; Smisdom N; Nydén M; Hermansson AM; Rudemo M; Braeckmans K
    Q Rev Biophys; 2015 Aug; 48(3):323-87. PubMed ID: 26314367
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis.
    Mueller F; Morisaki T; Mazza D; McNally JG
    Biophys J; 2012 Apr; 102(7):1656-65. PubMed ID: 22500766
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.
    Sund SE; Axelrod D
    Biophys J; 2000 Sep; 79(3):1655-69. PubMed ID: 10969025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.