BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16271826)

  • 41. A descriptive model for metallic ions adsorption from aqueous solutions onto activated carbons.
    Di Natale F; Erto A; Lancia A; Musmarra D
    J Hazard Mater; 2009 Sep; 169(1-3):360-9. PubMed ID: 19411134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.
    Velicu M; Fu H; Suri RP; Woods K
    J Hazard Mater; 2007 Sep; 148(3):599-605. PubMed ID: 17459583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes.
    Manchón-Vizuete E; Macías-García A; Nadal Gisbert A; Fernández-González C; Gómez-Serrano V
    J Hazard Mater; 2005 Mar; 119(1-3):231-8. PubMed ID: 15752870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of 2-mercaptobenzothiazole-derivatized mesoporous silica and removal of Hg(ii) from aqueous solution.
    Pérez-Quintanilla D; Del Hierro I; Fajardo M; Sierra I
    J Environ Monit; 2006 Jan; 8(1):214-22. PubMed ID: 16395482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of mercury capture by sorbent injection using a simplified model.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2009 Oct; 170(2-3):1179-85. PubMed ID: 19541417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heavy metal adsorption by a formulated zeolite-Portland cement mixture.
    Ok YS; Yang JE; Zhang YS; Kim SJ; Chung DY
    J Hazard Mater; 2007 Aug; 147(1-2):91-6. PubMed ID: 17239531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions.
    Puanngam M; Unob F
    J Hazard Mater; 2008 Jun; 154(1-3):578-87. PubMed ID: 18063298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid.
    Singh CK; Sahu JN; Mahalik KK; Mohanty CR; Mohan BR; Meikap BC
    J Hazard Mater; 2008 May; 153(1-2):221-8. PubMed ID: 17889434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of lead from aqueous solution by hybrid precursor prepared by rice hull.
    Gupta N; Amritphale SS; Chandra N
    J Hazard Mater; 2009 Apr; 163(2-3):1194-8. PubMed ID: 18774221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.
    El-Sikaily A; El Nemr A; Khaled A; Abdelwehab O
    J Hazard Mater; 2007 Sep; 148(1-2):216-28. PubMed ID: 17360109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material.
    Islam MA; Sakkas V; Albanis TA
    J Hazard Mater; 2009 Oct; 170(1):230-8. PubMed ID: 19477587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.
    Lo SI; Chen PC; Huang CC; Chang HT
    Environ Sci Technol; 2012 Mar; 46(5):2724-30. PubMed ID: 22309110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads.
    Popuri SR; Vijaya Y; Boddu VM; Abburi K
    Bioresour Technol; 2009 Jan; 100(1):194-9. PubMed ID: 18614363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Grass waste: a novel sorbent for the removal of basic dye from aqueous solution.
    Hameed BH
    J Hazard Mater; 2009 Jul; 166(1):233-8. PubMed ID: 19111987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental-benign utilisation of fly ash as low-cost adsorbents.
    Wang S; Wu H
    J Hazard Mater; 2006 Aug; 136(3):482-501. PubMed ID: 16530952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of mercury and lead ions from wastewater.
    Somerset V; Petrik L; Iwuoha E
    J Environ Manage; 2008 Apr; 87(1):125-31. PubMed ID: 17368920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficiency of spherosome for removal of chloroform from water.
    Adachi A; Okano T
    J Agric Food Chem; 2008 Feb; 56(4):1358-60. PubMed ID: 18247537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.