BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16272128)

  • 1. Stabilization mechanism of the tryptophan synthase alpha-subunit from Thermus thermophilus HB8: X-ray crystallographic analysis and calorimetry.
    Asada Y; Sawano M; Ogasahara K; Nakamura J; Ota M; Kuroishi C; Sugahara M; Yutani K; Kunishima N
    J Biochem; 2005 Oct; 138(4):343-53. PubMed ID: 16272128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of ATP-dependent phosphoenolpyruvate carboxykinase from Thermus thermophilus HB8 showing the structural basis of induced fit and thermostability.
    Sugahara M; Ohshima N; Ukita Y; Sugahara M; Kunishima N
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1500-7. PubMed ID: 16239727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization due to dimer formation of phosphoribosyl anthranilate isomerase from Thermus thermophilus HB8: X-ray Analysis and DSC experiments.
    Taka J; Ogasahara K; Jeyakanthan J; Kunishima N; Kuroishi C; Sugahara M; Yokoyama S; Yutani K
    J Biochem; 2005 May; 137(5):569-78. PubMed ID: 15944409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes in the alpha-subunit coupled to binding of the beta 2-subunit of tryptophan synthase from Escherichia coli: crystal structure of the tryptophan synthase alpha-subunit alone.
    Nishio K; Morimoto Y; Ishizuka M; Ogasahara K; Tsukihara T; Yutani K
    Biochemistry; 2005 Feb; 44(4):1184-92. PubMed ID: 15667212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state.
    Yamamoto H; Miwa H; Kunishima N
    J Mol Biol; 2008 Oct; 382(3):747-62. PubMed ID: 18675274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus.
    Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA
    J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Changes in the tryptophan synthase from a hyperthermophile upon alpha2beta2 complex formation: crystal structure of the complex.
    Lee SJ; Ogasahara K; Ma J; Nishio K; Ishida M; Yamagata Y; Tsukihara T; Yutani K
    Biochemistry; 2005 Aug; 44(34):11417-27. PubMed ID: 16114878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry.
    Yamagata Y; Ogasahara K; Hioki Y; Lee SJ; Nakagawa A; Nakamura H; Ishida M; Kuramitsu S; Yutani K
    J Biol Chem; 2001 Apr; 276(14):11062-71. PubMed ID: 11118452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors.
    Hioki Y; Ogasahara K; Lee SJ; Ma J; Ishida M; Yamagata Y; Matsuura Y; Ota M; Ikeguchi M; Kuramitsu S; Yutani K
    Eur J Biochem; 2004 Jul; 271(13):2624-35. PubMed ID: 15206928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for cold adaptation of the tryptophan synthase α subunit from the psychrophile Shewanella frigidimarina K14-2: crystal structure and physicochemical properties.
    Mitsuya D; Tanaka S; Matsumura H; Urano N; Takano K; Ogasahara K; Takehira M; Yutani K; Ishida M
    J Biochem; 2014 Feb; 155(2):73-82. PubMed ID: 24163283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of aldolase from Thermus thermophilus HB8 showing the contribution of oligomeric state to thermostability.
    Lokanath NK; Shiromizu I; Ohshima N; Nodake Y; Sugahara M; Yokoyama S; Kuramitsu S; Miyano M; Kunishima N
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1816-23. PubMed ID: 15388928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability.
    Bagautdinov B; Yutani K
    Acta Crystallogr D Biol Crystallogr; 2011 Dec; 67(Pt 12):1054-64. PubMed ID: 22120743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 A resolution.
    Fujinaga M; Berthet-Colominas C; Yaremchuk AD; Tukalo MA; Cusack S
    J Mol Biol; 1993 Nov; 234(1):222-33. PubMed ID: 8230201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus.
    Yoshida A; Tomita T; Kono H; Fushinobu S; Kuzuyama T; Nishiyama M
    FEBS J; 2009 Jun; 276(11):3124-36. PubMed ID: 19490113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of ribonuclease HI from Thermus thermophilus HB8 by the spontaneous formation of an intramolecular disulfide bond.
    Hirano N; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 1998 Sep; 37(36):12640-8. PubMed ID: 9730837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism.
    Bagautdinov B; Kunishima N
    J Mol Biol; 2007 Oct; 373(2):424-38. PubMed ID: 17825835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution.
    Ishikawa K; Okumura M; Katayanagi K; Kimura S; Kanaya S; Nakamura H; Morikawa K
    J Mol Biol; 1993 Mar; 230(2):529-42. PubMed ID: 8385228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus.
    Gregory ST; Cate JH; Dahlberg AE
    J Mol Biol; 2001 Jun; 309(2):333-8. PubMed ID: 11371156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.