BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16272132)

  • 21. Chemical synthesis and kinetic study of the smallest naturally occurring trypsin inhibitor SFTI-1 isolated from sunflower seeds and its analogues.
    Zabłotna E; Kaźmierczak K; Jaśkiewicz A; Stawikowski M; Kupryszewski G; Rolka K
    Biochem Biophys Res Commun; 2002 Apr; 292(4):855-9. PubMed ID: 11944892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational studies of [Abu(3, 11)]-SFTI-1, an analogue of the trypsin inhibitor isolated from sunflower seeds.
    Brzozowski K; Majewski R; Jaśkiewicz A; Legowska A; Klaudel L; Rodziewicz-Motowidło S; Rolka K
    J Pept Sci; 2008 Aug; 14(8):911-6. PubMed ID: 18351708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and synthesis of redox stable analogues of sunflower trypsin inhibitors (SFTI-1) on solid support, potent inhibitors of matriptase.
    Jiang S; Li P; Lee SL; Lin CY; Long YQ; Johnson MD; Dickson RB; Roller PP
    Org Lett; 2007 Jan; 9(1):9-12. PubMed ID: 17192072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of Serine-Proteinase-Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitor 1 (SFTI-1).
    Karna N; Łęgowska A; Malicki S; Dębowski D; Golik P; Gitlin A; Grudnik P; Wladyka B; Brzozowski K; Dubin G; Rolka K
    Chembiochem; 2015 Sep; 16(14):2036-45. PubMed ID: 26212347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.
    Sharma S; Tyagi R; Gupta MN; Singh TP
    Indian J Biochem Biophys; 2001; 38(1-2):34-41. PubMed ID: 11563328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Between two worlds: a comparative study on in vitro and in silico inhibition of trypsin and matriptase by redox-stable SFTI-1 variants at near physiological pH.
    Avrutina O; Fittler H; Glotzbach B; Kolmar H; Empting M
    Org Biomol Chem; 2012 Oct; 10(38):7753-62. PubMed ID: 22903577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational homogeneity in molecular recognition by proteolytic enzymes.
    Tyndall JD; Fairlie DP
    J Mol Recognit; 1999; 12(6):363-70. PubMed ID: 10611646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition.
    de Veer SJ; Swedberg JE; Akcan M; Rosengren KJ; Brattsand M; Craik DJ; Harris JM
    Biochem J; 2015 Jul; 469(2):243-53. PubMed ID: 25981970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the modelled structure of wheatwin1 by controlled proteolysis and sequence analysis of unfractionated digestion mixtures.
    Caporale C; Caruso C; Facchiano A; Nobile M; Leonardi L; Bertini L; Colonna G; Buonocore V
    Proteins; 1999 Aug; 36(2):192-204. PubMed ID: 10398366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory activity of double-sequence analogues of trypsin inhibitor SFTI-1 from sunflower seeds: an example of peptide splicing.
    Łegowska A; Lesner A; Bulak E; Jaśkiewicz A; Sieradzan A; Cydzik M; Stefanowicz P; Szewczuk Z; Rolka K
    FEBS J; 2010 May; 277(10):2351-9. PubMed ID: 20412298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational and biochemical analysis of the cyclic peptides which modulate serine protease activity.
    Pakkala M; Jylhäsalmi A; Wu P; Leinonen J; Stenman UH; Santa H; Vepsäläinen J; Peräkylä M; Närvänen A
    J Pept Sci; 2004 Jul; 10(7):439-47. PubMed ID: 15298179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide macrocyclization by a bifunctional endoprotease.
    Bernath-Levin K; Nelson C; Elliott AG; Jayasena AS; Millar AH; Craik DJ; Mylne JS
    Chem Biol; 2015 May; 22(5):571-82. PubMed ID: 25960260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)].
    Kuznetsova SS; Kolesanova EF; Talanova AV; Veselovsky AV
    Biomed Khim; 2016 May; 62(4):353-68. PubMed ID: 27562989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of nonphysiological protein and peptide substrates to proteases: differences between urokinase-type plasminogen activator and trypsin and contributions to the evolution of regulated proteolysis.
    Bergstrom RC; Coombs GS; Ye S; Madison EL; Goldsmith EJ; Corey DR
    Biochemistry; 2003 May; 42(18):5395-402. PubMed ID: 12731881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circular proteins and mechanisms of cyclization.
    Conlan BF; Gillon AD; Craik DJ; Anderson MA
    Biopolymers; 2010; 94(5):573-83. PubMed ID: 20564019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. When the surface tells what lies beneath: combinatorial phage-display mutagenesis reveals complex networks of surface-core interactions in the pacifastin protease inhibitor family.
    Szenthe B; Patthy A; Gáspári Z; Kékesi AK; Gráf L; Pál G
    J Mol Biol; 2007 Jun; 370(1):63-79. PubMed ID: 17499271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1.
    Li P; Jiang S; Lee SL; Lin CY; Johnson MD; Dickson RB; Michejda CJ; Roller PP
    J Med Chem; 2007 Nov; 50(24):5976-83. PubMed ID: 17985858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria.
    Ghosh R; Chakraborty S; Chakrabarti C; Dattagupta JK; Biswas S
    FEBS J; 2008 Feb; 275(3):421-34. PubMed ID: 18167146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potent, multi-target serine protease inhibition achieved by a simplified β-sheet motif.
    Chen X; Riley BT; de Veer SJ; Hoke DE; Van Haeften J; Leahy D; Swedberg JE; Brattsand M; Hartfield PJ; Buckle AM; Harris JM
    PLoS One; 2019; 14(1):e0210842. PubMed ID: 30668585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking.
    Melo FR; Rigden DJ; Franco OL; Mello LV; Ary MB; Grossi de Sá MF; Bloch C
    Proteins; 2002 Aug; 48(2):311-9. PubMed ID: 12112698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.