BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16272175)

  • 1. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation.
    Mingone CJ; Gupte SA; Ali N; Oeckler RA; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Mar; 290(3):L549-57. PubMed ID: 16272175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO.
    Gupte SA; Rupawalla T; Phillibert D; Wolin MS
    Am J Physiol; 1999 Dec; 277(6):L1124-32. PubMed ID: 10600882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for soluble guanylate cyclase and a thiol oxidation-elicited subunit dimerization of protein kinase G in pulmonary artery relaxation to hydrogen peroxide.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1235-41. PubMed ID: 20709865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
    Neo BH; Patel D; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H330-43. PubMed ID: 23709600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flavoprotein mechanism appears to prevent an oxygen-dependent inhibition of cGMP-associated nitric oxide-elicited relaxation of bovine coronary arteries.
    Iesaki T; Gupte SA; Wolin MS
    Circ Res; 1999 Nov; 85(11):1027-31. PubMed ID: 10571533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of NO-elicited pulmonary artery relaxation and guanylate cyclase activation by NADH oxidase and SOD.
    Gupte SA; Rupawalla T; Mohazzab-H KM; Wolin MS
    Am J Physiol; 1999 May; 276(5):H1535-42. PubMed ID: 10330236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsiveness of rat aorta and pulmonary artery to cGMP generators in the presence of thiol or heme oxidant.
    Tawa M; Yamashita Y; Masuoka T; Nakano K; Yoshida J; Nishio M; Ishibashi T
    J Pharmacol Sci; 2019 May; 140(1):43-47. PubMed ID: 31036520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
    Neo BH; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2295-304. PubMed ID: 21926339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme oxygenase-1 induction depletes heme and attenuates pulmonary artery relaxation and guanylate cyclase activation by nitric oxide.
    Mingone CJ; Ahmad M; Gupte SA; Chow JL; Wolin MS
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1244-50. PubMed ID: 18178725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries.
    Mingone CJ; Gupte SA; Iesaki T; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2003 Aug; 285(2):L296-304. PubMed ID: 12691956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged relaxation consistent with persistent soluble guanylyl cyclase activation in canine pulmonary artery following brief treatment with nitric oxide donors.
    Kwak YL; Jones KA; Warner DO; Perkins WJ
    Life Sci; 2006 Oct; 79(21):2001-9. PubMed ID: 16854434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide.
    Ye L; Liu J; Liu H; Ying L; Dou D; Chen Z; Xu X; Raj JU; Gao Y
    Pflugers Arch; 2013 Feb; 465(2):333-41. PubMed ID: 23143201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation.
    Mingone CJ; Gupte SA; Chow JL; Ahmad M; Abraham NG; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Sep; 291(3):L337-44. PubMed ID: 16899710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pentose phosphate pathway coordinates multiple redox-controlled relaxing mechanisms in bovine coronary arteries.
    Gupte SA; Arshad M; Viola S; Kaminski PM; Ungvari Z; Rabbani G; Koller A; Wolin MS
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2316-26. PubMed ID: 12933338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α.
    Patel D; Kandhi S; Kelly M; Neo BH; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2014 Feb; 306(4):L383-91. PubMed ID: 24375799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction.
    Gupte SA; Okada T; McMurtry IF; Oka M
    Pulm Pharmacol Ther; 2006; 19(4):303-9. PubMed ID: 16203165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta.
    El-Awady MS; Smirnov SV; Watson ML
    Br J Pharmacol; 2008 Dec; 155(8):1164-73. PubMed ID: 18806822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of guanylate cyclase stimulation by NO and bovine arterial relaxation to peroxynitrite and H2O2.
    Iesaki T; Gupte SA; Kaminski PM; Wolin MS
    Am J Physiol; 1999 Sep; 277(3):H978-85. PubMed ID: 10484419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators.
    Mülsch A; Bauersachs J; Schäfer A; Stasch JP; Kast R; Busse R
    Br J Pharmacol; 1997 Feb; 120(4):681-9. PubMed ID: 9051308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.