BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16272220)

  • 21. Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins.
    Martí MC; Olmos E; Calvete JJ; Díaz I; Barranco-Medina S; Whelan J; Lázaro JJ; Sevilla F; Jiménez A
    Plant Physiol; 2009 Jun; 150(2):646-57. PubMed ID: 19363090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of thioredoxin deletion and p53 cysteine replacement on human p53 activity in wild-type and thioredoxin reductase null yeast.
    Stoner CS; Pearson GD; Koç A; Merwin JR; Lopez NI; Merrill GF
    Biochemistry; 2009 Sep; 48(38):9156-69. PubMed ID: 19681600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach.
    García-Santamarina S; Boronat S; Calvo IA; Rodríguez-Gabriel M; Ayté J; Molina H; Hidalgo E
    Antioxid Redox Signal; 2013 May; 18(13):1549-56. PubMed ID: 23121505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication.
    Meng L; Wong JH; Feldman LJ; Lemaux PG; Buchanan BB
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3900-5. PubMed ID: 20133584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
    Collin V; Issakidis-Bourguet E; Marchand C; Hirasawa M; Lancelin JM; Knaff DB; Miginiac-Maslow M
    J Biol Chem; 2003 Jun; 278(26):23747-52. PubMed ID: 12707279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia.
    Floen MJ; Forred BJ; Bloom EJ; Vitiello PF
    Free Radic Biol Med; 2014 Oct; 75():167-77. PubMed ID: 25106706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrids from pea chloroplast thioredoxins f and m: physicochemical and kinetic characteristics.
    López Jaramillo J; Chueca A; Sahrawy M; López Gorgé J
    Plant J; 1998 Jul; 15(2):155-63. PubMed ID: 9721674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides.
    Feng X; Sun W; Kong L; Gao H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of the thiol/disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1.
    Pieulle L; Stocker P; Vinay M; Nouailler M; Vita N; Brasseur G; Garcin E; Sebban-Kreuzer C; Dolla A
    J Biol Chem; 2011 Mar; 286(10):7812-7821. PubMed ID: 21199874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts.
    Yoshida K; Hara S; Hisabori T
    J Biol Chem; 2015 Jun; 290(23):14278-88. PubMed ID: 25878252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans.
    McCarver AC; Lessner DJ
    FEBS J; 2014 Oct; 281(20):4598-611. PubMed ID: 25112424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different anti-oxidant effects of thioredoxin 1 and thioredoxin 2 in retinal epithelial cells.
    Sugano E; Isago H; Murayama N; Tamai M; Tomita H
    Cell Struct Funct; 2013; 38(1):81-8. PubMed ID: 23485938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the structure and activity of thioredoxin 2 and thioredoxin 1 from Acinetobacter baumannii.
    Chang YJ; Sung JH; Lee CS; Lee JH; Park HH
    IUCrJ; 2023 Mar; 10(Pt 2):147-155. PubMed ID: 36752373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the mechanism of thioredoxin-dependent activation of γ-glutamylcyclotransferase, RipAY, from Ralstonia solanacearum.
    Fujiwara S; Ikejiri A; Tanaka N; Tabuchi M
    Biochem Biophys Res Commun; 2020 Mar; 523(3):759-765. PubMed ID: 31948763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Broader than expected tolerance for substitutions in the WCGPCK catalytic motif of yeast thioredoxin 2.
    Vicker SL; Maina EN; Showalter AK; Tran N; Davidson EE; Bailey MR; McGarry SW; Freije WM; West JD
    Free Radic Biol Med; 2022 Jan; 178():308-313. PubMed ID: 34530076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the Functional Relationship between
    Jurado-Flores A; Delgado-Requerey V; Gálvez-Ramírez A; Puerto-Galán L; Pérez-Ruiz JM; Cejudo FJ
    Antioxidants (Basel); 2020 Oct; 9(11):. PubMed ID: 33142810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.