These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16272240)

  • 1. The Dynamics of Quadrupedal Walking. 1938 - A step forward for locomotor mechanics.
    Roberts T; Manter JT
    J Exp Biol; 2005 Nov; 208(Pt 22):4191-2. PubMed ID: 16272240
    [No Abstract]   [Full Text] [Related]  

  • 2. Energetic costs of bipedal and quadrupedal walking in Japanese macaques.
    Nakatsukasa M; Ogihara N; Hamada Y; Goto Y; Yamada M; Hirakawa T; Hirasaki E
    Am J Phys Anthropol; 2004 Jul; 124(3):248-56. PubMed ID: 15197820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlimb Coordination During Step-to-Step Transition and Gait Performance.
    Sousa AS; Tavares JM
    J Mot Behav; 2015; 47(6):563-74. PubMed ID: 25893693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques.
    Nakatsukasa M; Hirasaki E; Ogihara N
    Am J Phys Anthropol; 2006 Sep; 131(1):33-7. PubMed ID: 16485295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domestic cat walking parallels human constrained optimization: optimization strategies and the comparison of normal and sensory deficient individuals.
    Bertram JE; Gutmann A; Randev J; Hulliger M
    Hum Mov Sci; 2014 Aug; 36():154-66. PubMed ID: 24974156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An instance of reduced center of mass displacement: the Ba Gua Zhang walking gait.
    Chong RK; Chiu FC; Lee KH; Do MC
    Percept Mot Skills; 2009 Dec; 109(3):646-8. PubMed ID: 20178262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric Modeling of Human Gradient Walking for Predicting Minimum Energy Expenditure.
    Saborit G; Casinos A
    Comput Math Methods Med; 2015; 2015():407156. PubMed ID: 26417377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of trunk flexion on lower-limb kinetics of able-bodied gait.
    Kluger D; Major MJ; Fatone S; Gard SA
    Hum Mov Sci; 2014 Feb; 33():395-403. PubMed ID: 24423389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers.
    Marques NR; LaRoche DP; Hallal CZ; Crozara LF; Morcelli MH; Karuka AH; Navega MT; Gonçalves M
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):330-6. PubMed ID: 23391513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral trunk lean gait modification increases the energy cost of treadmill walking in those with knee osteoarthritis.
    Takacs J; Kirkham AA; Perry F; Brown J; Marriott E; Monkman D; Havey J; Hung S; Campbell KL; Hunt MA
    Osteoarthritis Cartilage; 2014 Feb; 22(2):203-9. PubMed ID: 24333292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brief Communication: Stand and shuffle: when does it make energetic sense?
    Sylvester AD; Kramer PA
    Am J Phys Anthropol; 2008 Apr; 135(4):484-8. PubMed ID: 18000893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics and kinematics of walking in the barnacle goose (Branta leucopsis).
    Nudds RL; Gardiner JD; Tickle PG; Codd JR
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Jul; 156(3):318-24. PubMed ID: 20138237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic kinematics of walking. Step length and step frequency. A review.
    Zatsiorky VM; Werner SL; Kaimin MA
    J Sports Med Phys Fitness; 1994 Jun; 34(2):109-34. PubMed ID: 7967581
    [No Abstract]   [Full Text] [Related]  

  • 18. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait selection and the ontogeny of quadrupedal walking in squirrel monkeys (Saimiri boliviensis).
    Young JW
    Am J Phys Anthropol; 2012 Apr; 147(4):580-92. PubMed ID: 22328448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimpanzee locomotor energetics and the origin of human bipedalism.
    Sockol MD; Raichlen DA; Pontzer H
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12265-9. PubMed ID: 17636134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.