BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16272392)

  • 21. Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage.
    Buchan A; Neidle EL; Moran MA
    Appl Environ Microbiol; 2004 Mar; 70(3):1658-68. PubMed ID: 15006791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens.
    Parke D
    J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional organization of genes for protocatechuate and quinate degradation from Acinetobacter sp. strain ADP1.
    Dal S; Trautwein G; Gerischer U
    Appl Environ Microbiol; 2005 Feb; 71(2):1025-34. PubMed ID: 15691962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp.
    Parke D; Ornston LN
    J Bacteriol; 1986 Jan; 165(1):288-92. PubMed ID: 3941043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquisition of apparent DNA slippage structures during extensive evolutionary divergence of pcaD and catD genes encoding identical catalytic activities in Acinetobacter calcoaceticus.
    Hartnett GB; Ornston LN
    Gene; 1994 May; 142(1):23-9. PubMed ID: 8181753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach.
    Park SH; Kim JW; Yun SH; Leem SH; Kahng HY; Kim SI
    J Microbiol; 2006 Dec; 44(6):632-40. PubMed ID: 17205041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Bradyrhizobium japonicum pcaBDC genes involved in 4-hydroxybenzoate degradation.
    Lorite MJ; Sanjuan J; Velasco L; Olivares J; Bedmar EJ
    Biochim Biophys Acta; 1998 May; 1397(3):257-61. PubMed ID: 9582432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1.
    Hara H; Eltis LD; Davies JE; Mohn WW
    J Bacteriol; 2007 Mar; 189(5):1641-7. PubMed ID: 17142403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the -35 and the -10 promoter elements.
    Guo Z; Houghton JE
    Mol Microbiol; 1999 Apr; 32(2):253-63. PubMed ID: 10231483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmid-borne genes code for an angular dioxygenase involved in dibenzofuran degradation by Terrabacter sp. strain YK3.
    Iida T; Mukouzaka Y; Nakamura K; Kudo T
    Appl Environ Microbiol; 2002 Aug; 68(8):3716-23. PubMed ID: 12147464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The beta-ketoadipate pathway and the biology of self-identity.
    Harwood CS; Parales RE
    Annu Rev Microbiol; 1996; 50():553-90. PubMed ID: 8905091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus.
    Doten RC; Ngai KL; Mitchell DJ; Ornston LN
    J Bacteriol; 1987 Jul; 169(7):3168-74. PubMed ID: 3036773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene.
    Brzostowicz PC; Reams AB; Clark TJ; Neidle EL
    Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis.
    Wattiau P; Bastiaens L; van Herwijnen R; Daal L; Parsons JR; Renard ME; Springael D; Cornelis GR
    Res Microbiol; 2001 Dec; 152(10):861-72. PubMed ID: 11766961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
    Zhao KX; Huang Y; Chen X; Wang NX; Liu SJ
    J Bacteriol; 2010 Mar; 192(6):1565-72. PubMed ID: 20081038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus.
    Patel RN; Mazumdar S; Ornston LN
    J Biol Chem; 1975 Aug; 250(16):6567-7. PubMed ID: 1158871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida.
    Parke D; Ornston LN
    J Bacteriol; 1976 Apr; 126(1):272-81. PubMed ID: 1262305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii.
    Parke D; Rynne F; Glenn A
    J Bacteriol; 1991 Sep; 173(17):5546-50. PubMed ID: 1885531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126.
    Schuler L; Ní Chadhain SM; Jouanneau Y; Meyer C; Zylstra GJ; Hols P; Agathos SN
    Appl Environ Microbiol; 2008 Feb; 74(4):1050-7. PubMed ID: 18156320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward β-ketoadipate.
    Yamamoto-Tamura K; Kawagishi I; Ogawa N; Fujii T
    Biosci Biotechnol Biochem; 2015; 79(6):926-36. PubMed ID: 25649919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.