These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418 [TBL] [Abstract][Full Text] [Related]
3. Structural simulation and protein engineering to convert an endo-chitosanase to an exo-chitosanase. Yao YY; Shrestha KL; Wu YJ; Tasi HJ; Chen CC; Yang JM; Ando A; Cheng CY; Li YK Protein Eng Des Sel; 2008 Sep; 21(9):561-6. PubMed ID: 18540010 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. Adachi W; Sakihama Y; Shimizu S; Sunami T; Fukazawa T; Suzuki M; Yatsunami R; Nakamura S; Takénaka A J Mol Biol; 2004 Oct; 343(3):785-95. PubMed ID: 15465062 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-A resolution and its substrate recognition mechanism. Saito J; Kita A; Higuchi Y; Nagata Y; Ando A; Miki K J Biol Chem; 1999 Oct; 274(43):30818-25. PubMed ID: 10521473 [TBL] [Abstract][Full Text] [Related]
6. Role of acidic amino acid residues in chitooligosaccharide-binding to Streptomyces sp. N174 chitosanase. Katsumi T; Lacombe-Harvey ME; Tremblay H; Brzezinski R; Fukamizo T Biochem Biophys Res Commun; 2005 Dec; 338(4):1839-44. PubMed ID: 16288718 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1 in complex with chitotetraose. Suzuki M; Saito A; Kobayashi M; Yokoyama T; Omiya S; Li J; Sugita K; Miki K; Saito JI; Ando A Biochim Biophys Acta Gen Subj; 2024 Mar; 1868(3):130549. PubMed ID: 38158023 [TBL] [Abstract][Full Text] [Related]
8. Characterization of antifungal activity of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1. Tomita M; Kikuchi A; Kobayashi M; Yamaguchi M; Ifuku S; Yamashoji S; Ando A; Saito A Antonie Van Leeuwenhoek; 2013 Nov; 104(5):737-48. PubMed ID: 23892828 [TBL] [Abstract][Full Text] [Related]
9. Structural and catalytic roles of amino acid residues located at substrate-binding pocket in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase. Chen JH; Tsai LC; Huang HC; Shyur LF Proteins; 2010 Oct; 78(13):2820-30. PubMed ID: 20635417 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the substrate-binding mechanism for a novel chitosanase. Lyu Q; Wang S; Xu W; Han B; Liu W; Jones DN; Liu W Biochem J; 2014 Jul; 461(2):335-45. PubMed ID: 24766439 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. Cui Z; Maruyama Y; Mikami B; Hashimoto W; Murata K J Mol Biol; 2007 Nov; 374(2):384-98. PubMed ID: 17936784 [TBL] [Abstract][Full Text] [Related]
13. The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni. Nam GH; Cha SS; Yun YS; Oh YH; Hong BH; Lee HS; Choi KY Biochem J; 2003 Oct; 375(Pt 2):297-305. PubMed ID: 12852789 [TBL] [Abstract][Full Text] [Related]
14. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding. Zhou Z; Zhao S; Liu Y; Chang Z; Ma Y; Li J; Song J Appl Biochem Biotechnol; 2016 Nov; 180(6):1167-1179. PubMed ID: 27318711 [TBL] [Abstract][Full Text] [Related]
15. Substrate recognition by unsaturated glucuronyl hydrolase from Bacillus sp. GL1. Itoh T; Hashimoto W; Mikami B; Murata K Biochem Biophys Res Commun; 2006 May; 344(1):253-62. PubMed ID: 16630576 [TBL] [Abstract][Full Text] [Related]
16. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Lee YS; Yoo JS; Chung SY; Lee YC; Cho YS; Choi YL Appl Microbiol Biotechnol; 2006 Nov; 73(1):113-21. PubMed ID: 16645821 [TBL] [Abstract][Full Text] [Related]
17. Structural basis for thermostability of endo-1,5-alpha-L-arabinanase from Bacillus thermodenitrificans TS-3. Yamaguchi A; Tada T; Wada K; Nakaniwa T; Kitatani T; Sogabe Y; Takao M; Sakai T; Nishimura K J Biochem; 2005 May; 137(5):587-92. PubMed ID: 15944411 [TBL] [Abstract][Full Text] [Related]
18. Calcium triggers the refolding of Bacillus subtilis chitosanase. Colomer-Pallas A; Pereira Y; Petit-Glatron MF; Chambert R Biochem J; 2003 Feb; 369(Pt 3):731-8. PubMed ID: 12401130 [TBL] [Abstract][Full Text] [Related]
19. Investigating the binding of beta-1,4-galactan to Bacillus licheniformis beta-1,4-galactanase by crystallography and computational modeling. Le Nours J; De Maria L; Welner D; Jørgensen CT; Christensen LL; Borchert TV; Larsen S; Lo Leggio L Proteins; 2009 Jun; 75(4):977-89. PubMed ID: 19089956 [TBL] [Abstract][Full Text] [Related]
20. Role of active-site residues of dispersin B, a biofilm-releasing beta-hexosaminidase from a periodontal pathogen, in substrate hydrolysis. Manuel SG; Ragunath C; Sait HB; Izano EA; Kaplan JB; Ramasubbu N FEBS J; 2007 Nov; 274(22):5987-99. PubMed ID: 17949435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]