BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16273368)

  • 1. The peculiar distribution of class I and class II aldolases in diatoms and in red algae.
    Kroth PG; Schroers Y; Kilian O
    Curr Genet; 2005 Dec; 48(6):389-400. PubMed ID: 16273368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms.
    Gruber A; Weber T; Bártulos CR; Vugrinec S; Kroth PG
    J Basic Microbiol; 2009 Feb; 49(1):58-72. PubMed ID: 19206144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presequence acquisition during secondary endocytobiosis and the possible role of introns.
    Kilian O; Kroth PG
    J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms.
    Allen AE; Moustafa A; Montsant A; Eckert A; Kroth PG; Bowler C
    Mol Biol Evol; 2012 Jan; 29(1):367-79. PubMed ID: 21903677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria.
    Gross W; Lenze D; Nowitzki U; Weiske J; Schnarrenberger C
    Gene; 1999 Apr; 230(1):7-14. PubMed ID: 10196468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage.
    Oudot-Le Secq MP; Grimwood J; Shapiro H; Armbrust EV; Bowler C; Green BR
    Mol Genet Genomics; 2007 Apr; 277(4):427-39. PubMed ID: 17252281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids.
    Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J
    BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates.
    Patron NJ; Rogers MB; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1169-75. PubMed ID: 15470245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses?
    Stiller JW; Huang J; Ding Q; Tian J; Goodwillie C
    BMC Genomics; 2009 Oct; 10():484. PubMed ID: 19843329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis.
    Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T
    J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum.
    Moog D; Rensing SA; Archibald JM; Maier UG; Ullrich KK
    Genome Biol Evol; 2015 Oct; 7(11):2955-69. PubMed ID: 26454011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin.
    Weber T; Gruber A; Kroth PG
    Mol Plant; 2009 May; 2(3):468-77. PubMed ID: 19825630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D
    Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.
    Moog D; Nozawa A; Tozawa Y; Kamikawa R
    Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.
    Teich R; Zauner S; Baurain D; Brinkmann H; Petersen J
    Protist; 2007 Jul; 158(3):263-76. PubMed ID: 17368985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models.
    Morozov AA; Galachyants YP
    Mar Genomics; 2019 Jun; 45():72-78. PubMed ID: 30792089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.
    Chan CX; Reyes-Prieto A; Bhattacharya D
    PLoS One; 2011; 6(12):e29138. PubMed ID: 22195008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of the pennate diatom Phaeodactylum tricornutum.
    Montsant A; Jabbari K; Maheswari U; Bowler C
    Plant Physiol; 2005 Feb; 137(2):500-13. PubMed ID: 15665249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.