BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16273433)

  • 1. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska.
    Kelsey RG; Hennon PE; Huso M; Karchesy JJ
    J Chem Ecol; 2005 Nov; 31(11):2653-70. PubMed ID: 16273433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.
    Karchesy JJ; Kelsey RG; González-Hernández MP
    J Chem Ecol; 2018 May; 44(5):510-524. PubMed ID: 29654493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal trends in
    Ohashi S; Kuroda K; Takano T; Suzuki Y; Fujiwara T; Abe H; Kagawa A; Sugiyama M; Kubojima Y; Zhang C; Yamamoto K
    J Environ Radioact; 2017 Nov; 178-179():335-342. PubMed ID: 28965024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar.
    Panella NA; Dolan MC; Karchesy JJ; Xiong Y; Peralta-Cruz J; Khasawneh M; Montenieri JA; Maupin GO
    J Med Entomol; 2005 May; 42(3):352-8. PubMed ID: 15962787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodes scapularis (Acari: Ixodidae).
    Dietrich G; Dolan MC; Peralta-Cruz J; Schmidt J; Piesman J; Eisen RJ; Karchesy JJ
    J Med Entomol; 2006 Sep; 43(5):957-61. PubMed ID: 17017233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident.
    Kuroda K; Kagawa A; Tonosaki M
    J Environ Radioact; 2013 Aug; 122():37-42. PubMed ID: 23531497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically important eremophilane sesquiterpenes from alaska cedar heartwood essential oil and their semi-synthetic derivatives.
    Khasawneh MA; Xiong Y; Peralta-Cruz J; Karchesy JJ
    Molecules; 2011 Jun; 16(6):4775-85. PubMed ID: 21654582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea.
    Miranda I; Sousa V; Ferreira J; Pereira H
    PLoS One; 2017; 12(6):e0179268. PubMed ID: 28614371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests.
    Oberle B; Ogle K; Zanne AE; Woodall CW
    PLoS One; 2018; 13(5):e0196712. PubMed ID: 29742158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decadal trends in
    Ohashi S; Kuroda K; Abe H; Kagawa A; Komatsu M; Sugiyama M; Suzuki Y; Fujiwara T; Takano T
    Sci Rep; 2022 Jul; 12(1):11243. PubMed ID: 35788621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry.
    Saito K; Mitsutani T; Imai T; Matsushita Y; Fukushima K
    Anal Chem; 2008 Mar; 80(5):1552-7. PubMed ID: 18232669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antineoplastic agents. 529. Isolation and structure of nootkastatins 1 and 2 from the Alaskan yellow cedar Chamaecyparis nootkatensis.
    Pettit GR; Tan R; Northen JS; Herald DL; Chapuis JC; Pettit RK
    J Nat Prod; 2004 Sep; 67(9):1476-82. PubMed ID: 15387645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of extractable conifer heartwood compounds toward Phytophthora ramorum.
    Manter DK; Kelsey RG; Karchesy JJ
    J Chem Ecol; 2007 Nov; 33(11):2133-47. PubMed ID: 17929093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis).
    Cankar K; van Houwelingen A; Goedbloed M; Renirie R; de Jong RM; Bouwmeester H; Bosch D; Sonke T; Beekwilder J
    FEBS Lett; 2014 Mar; 588(6):1001-7. PubMed ID: 24530525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Dynamics of Snags.
    Morrison ML; Raphael MG
    Ecol Appl; 1993 May; 3(2):322-330. PubMed ID: 27759324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prediction models of sapwood density, heartwood density, and bark density in Larix olgensis plantation].
    Peng YX; Li FR; Liu F; Dong LH
    Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1113-1120. PubMed ID: 32530185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica).
    Cheng SS; Lin HY; Chang ST
    J Agric Food Chem; 2005 Feb; 53(3):614-9. PubMed ID: 15686410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extractive concentrations and cellular-level distributions change radially from outer to inner heartwood in Scots pine.
    Belt T; Venäläinen M; Altgen M; Harju A; Rautkari L
    Tree Physiol; 2021 Jun; 41(6):1034-1045. PubMed ID: 33291149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of heartwood extractives and quaternary ammonium compounds on termite resistance of treated wood.
    Hwang WJ; Kartal SN; Yoshimura T; Imamura Y
    Pest Manag Sci; 2007 Jan; 63(1):90-5. PubMed ID: 17054087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the distribution of radiocesium in the wood of Japanese cedar trees from 2011 to 2013.
    Ogawa H; Hirano Y; Igei S; Yokota K; Arai S; Ito H; Kumata A; Yoshida H
    J Environ Radioact; 2016 Sep; 161():51-7. PubMed ID: 26774216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.