These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16274090)

  • 1. Phosphorus release in aerobic sludge digestion.
    Ju LK; Shah HK; Porteous J
    Water Environ Res; 2005; 77(5):553-9. PubMed ID: 16274090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge.
    Pokhrel SP; Milke MW; Bello-Mendoza R; Buitrón G; Thiele J
    Waste Manag; 2018 Jun; 76():90-97. PubMed ID: 29573925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus release mechanisms during digestion of EBPR sludge under anaerobic, anoxic and aerobic conditions.
    Bi D; Guo X; Chen D
    Water Sci Technol; 2013; 67(9):1953-9. PubMed ID: 23656937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of stabilization and sludge properties in a combined process of anaerobic digestion and thermophilic aerobic digestion.
    Cheng J; Kong F; Zhu J; Wu X
    Environ Technol; 2015; 36(21):2786-95. PubMed ID: 25950189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.
    Tomei MC; Mosca Angelucci D; Levantesi C
    Sci Total Environ; 2016 Mar; 545-546():453-64. PubMed ID: 26760266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic sludge digestion under low dissolved oxygen concentrations.
    Arunachalam R; Shah HK; Ju LK
    Water Environ Res; 2004; 76(5):453-62. PubMed ID: 15523791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(8):1689-94. PubMed ID: 21866769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between polyphosphate- and glycogen-accumulating organisms in enhanced-biological-phosphorus-removal systems: effect of temperature and sludge age.
    Whang LM; Park JK
    Water Environ Res; 2006 Jan; 78(1):4-11. PubMed ID: 16553160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.
    Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ
    Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.
    Nittami T; Oi H; Matsumoto K; Seviour RJ
    N Biotechnol; 2011 Dec; 29(1):2-8. PubMed ID: 21718809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on biological phosphorus uptake.
    Serralta J; Ferrer J; Borrás L; Seco A
    Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process.
    Lee D; Kim M; Chung J
    J Biosci Bioeng; 2007 Apr; 103(4):338-44. PubMed ID: 17502275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of biological and chemical processes in anoxic-aerobic digestion of phosphorus rich waste activated sludge.
    Ikumi DS; Harding TH
    Water Res; 2020 Mar; 170():115333. PubMed ID: 31790887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale evaluation of the application of low pH-inducible polyphosphate accumulation to the biological removal of phosphate from wastewaters.
    Mullan A; McGrath JW; Adamson T; Irwin S; Quinn JP
    Environ Sci Technol; 2006 Jan; 40(1):296-301. PubMed ID: 16433364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms governing the dissolution of phosphorus and iron in sewage sludge by the bioacidification process and its correlation with iron phosphate speciation.
    Saoudi MA; Dabert P; Vedrenne F; Daumer ML
    Chemosphere; 2022 Nov; 307(Pt 2):135704. PubMed ID: 35940418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge.
    Liu Y; Gao M; Zhang A; Liu Z
    Bioresour Technol; 2017 Jul; 235():202-210. PubMed ID: 28365348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.