These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16274230)
1. Role of the tetrahemic subunit in Desulfovibrio vulgaris hildenborough formate dehydrogenase. ElAntak L; Dolla A; Durand MC; Bianco P; Guerlesquin F Biochemistry; 2005 Nov; 44(45):14828-34. PubMed ID: 16274230 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough. Sebban-Kreuzer C; Blackledge M; Dolla A; Marion D; Guerlesquin F Biochemistry; 1998 Jun; 37(23):8331-40. PubMed ID: 9622485 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. Sebban C; Blanchard L; Bruschi M; Guerlesquin F FEMS Microbiol Lett; 1995 Nov; 133(1-2):143-9. PubMed ID: 8566699 [TBL] [Abstract][Full Text] [Related]
4. Redox chemistry of low-pH forms of tetrahemic cytochrome c3. Santos M; Dos Santos MM; Gonçalves ML; Costa C; Romão JC; Moura JJ J Inorg Biochem; 2006 Dec; 100(12):2009-16. PubMed ID: 17084898 [TBL] [Abstract][Full Text] [Related]
5. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
6. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767 [TBL] [Abstract][Full Text] [Related]
7. The formate dehydrogenase-cytochrome c553 complex from Desulfovibrio vulgaris Hildenborough. Sebban-Kreuzer C; Dolla A; Guerlesquin F Eur J Biochem; 1998 May; 253(3):645-52. PubMed ID: 9654061 [TBL] [Abstract][Full Text] [Related]
8. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure. Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869 [TBL] [Abstract][Full Text] [Related]
9. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
11. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ; Guerlesquin F; Marion D Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485 [TBL] [Abstract][Full Text] [Related]
12. Replacement of lysine 45 by uncharged residues modulates the redox-Bohr effect in tetraheme cytochrome c3 of Desulfovibrio vulgaris (Hildenborough). Saraiva LM; Salgueiro CA; da Costa PN; Messias AC; LeGall J; van Dongen WM; Xavier AV Biochemistry; 1998 Sep; 37(35):12160-5. PubMed ID: 9724528 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Bruschi M; Bertrand P; More C; Leroy G; Bonicel J; Haladjian J; Chottard G; Pollock WB; Voordouw G Biochemistry; 1992 Mar; 31(12):3281-8. PubMed ID: 1313289 [TBL] [Abstract][Full Text] [Related]
14. Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments. Santana M Anaerobe; 2008 Jun; 14(3):145-56. PubMed ID: 18457966 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and spectroscopic characterization of two new cytochromes isolated from Desulfuromonas acetoxidans. Bruschi M; Woudstra M; Guigliarelli B; Asso M; Lojou E; Petillot Y; Abergel C Biochemistry; 1997 Sep; 36(35):10601-8. PubMed ID: 9271490 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer in tetrahemic cytochromes c3: spectroelectrochemical evidence for a conformational change triggered by heme IV reduction. Kazanskaya I; Lexa D; Bruschi M; Chottard G Biochemistry; 1996 Oct; 35(41):13411-8. PubMed ID: 8873609 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex--a membrane-bound redox complex involved in the sulfate respiratory pathway. Pires RH; Venceslau SS; Morais F; Teixeira M; Xavier AV; Pereira IA Biochemistry; 2006 Jan; 45(1):249-62. PubMed ID: 16388601 [TBL] [Abstract][Full Text] [Related]
18. The Tmc complex from Desulfovibrio vulgaris hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Pereira PM; Teixeira M; Xavier AV; Louro RO; Pereira IA Biochemistry; 2006 Aug; 45(34):10359-67. PubMed ID: 16922512 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Desulfovibrio vulgaris Hildenborough cytochrome c553 in Desulfovibrio desulfuricans G200. Evidence of conformational heterogeneity in the oxidized protein by NMR. Blanchard L; Marion D; Pollock B; Voordouw G; Wall J; Bruschi M; Guerlesquin F Eur J Biochem; 1993 Dec; 218(2):293-301. PubMed ID: 8269917 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer from HiPIP to the photooxidized tetraheme cytochrome subunit of Allochromatium vinosum reaction center: new insights from site-directed mutagenesis and computational studies. Venturoli G; Mamedov MD; Mansy SS; Musiani F; Strocchi M; Francia F; Semenov AY; Cowan JA; Ciurli S Biochemistry; 2004 Jan; 43(2):437-45. PubMed ID: 14717598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]