BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16274690)

  • 1. Leishmania major and Leishmania tropica: II. Effect of an immunomodulator, S(2) complex on the enzymes of the parasites.
    Al-Mulla Hummadi YM; Al-Bashir NM; Najim RA
    Exp Parasitol; 2006 Feb; 112(2):85-91. PubMed ID: 16274690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism behind the antileishmanial effect of zinc sulphate. II. Effects on the enzymes of the parasites.
    Al-Mulla Hummadi YM; Al-Bashir NM; Najim RA
    Ann Trop Med Parasitol; 2005 Mar; 99(2):131-9. PubMed ID: 15814032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leishmania major and Leishmania tropica: I the in vitro effects of an immunomodulator, S2-Complex.
    Al-Mulla Hummadi YM; Najim RA; Al-Bashir NM
    Exp Parasitol; 2005 Sep; 111(1):47-54. PubMed ID: 15970286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The virulence, metacyclogenesis and respiratory enzymes of Leishmania isolated in culture from laboratory animals].
    Nasyrov FSh; Nasyrova RM; Kallinikova VD; Saf'ianova VM
    Parazitologiia; 1993; 27(4):301-8. PubMed ID: 8414649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrates of hexokinase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase prevent the inhibitory response induced by ascorbic acid/iron and dehydroascorbic acid in rabbit erythrocytes.
    Fiorani M; De Sanctis R; Scarlatti F; Stocchi V
    Arch Biochem Biophys; 1998 Aug; 356(2):159-66. PubMed ID: 9705206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of key enzymes of carbohydrate metabolism in regenerating mouse liver by ascorbic acid.
    Dixit A; Baquer NZ; Rao AR
    Biochem Int; 1992 Feb; 26(1):143-51. PubMed ID: 1535498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by Dications of in vitro growth of Leishmania major and Leishmania tropica: causative agents of old world cutaneous leishmaniasis.
    Rosypal AC; Werbovetz KA; Salem M; Stephens CE; Kumar A; Boykin DW; Hall JE; Tidwell RR
    J Parasitol; 2008 Jun; 94(3):743-9. PubMed ID: 18605790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism behind the antileishmanial effect of zinc sulphate. I. An in-vitro study.
    Al-Mulla Hummadi YM; Najim RA; Al-Bashir NM
    Ann Trop Med Parasitol; 2005 Jan; 99(1):27-36. PubMed ID: 15701252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical studies on the distribution of some enzymes concerned with carbohydrate metabolism in the locus ceruleus, nucleus tractus mesencephalicus n. trigemini, nucleus dorsalis n. vagi and nucleus n. hypoglossi of the rat.
    Iijima K; Imai K
    Acta Histochem; 1975; 52(1):145-63. PubMed ID: 809976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of vitamin K on the activity of glycolysis and pentose phosphate cycle enzymes].
    Lider VA
    Vopr Med Khim; 1988; 34(3):64-7. PubMed ID: 3420814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals.
    Mottram JC; Coombs GH
    Exp Parasitol; 1985 Apr; 59(2):151-60. PubMed ID: 2982638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leishmania spp.: mechanisms of toxicity of nitrogen oxidation products.
    Mauël J; Ransijn A
    Exp Parasitol; 1997 Oct; 87(2):98-111. PubMed ID: 9326885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of high glucose and high insulin concentrations on pentose phosphate shunt enzymes and malic enzyme in cultured human endothelial cells.
    Hawthorne GC; Alberti KG
    Horm Metab Res; 1988 Oct; 20(10):645-7. PubMed ID: 3065197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [In vitro evaluation of antileishmania activity of Artemisia herba alba Asso].
    Hatimi S; Boudouma M; Bichichi M; Chaib N; Idrissi NG
    Bull Soc Pathol Exot; 2001 Mar; 94(1):29-31. PubMed ID: 11346978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.
    Capriles PV; Baptista LP; Guedes IA; Guimarães AC; Custódio FL; Alves-Ferreira M; Dardenne LE
    J Mol Graph Model; 2015 Feb; 55():134-47. PubMed ID: 25528729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antileishmanial and antibacterial activity of a new pyrazole derivative designated 4-[2-(1-(ethylamino)-2-methyl- propyl)phenyl]-3-(4-methyphenyl)-1-phenylpyrazole.
    Dardari Z; Lemrani M; Sebban A; Bahloul A; Hassar M; Kitane S; Berrada M; Boudouma M
    Arch Pharm (Weinheim); 2006 Jun; 339(6):291-8. PubMed ID: 16619283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leishmania tropica: cysteine proteases are essential for growth and pathogenicity.
    Mahmoudzadeh-Niknam H; McKerrow JH
    Exp Parasitol; 2004; 106(3-4):158-63. PubMed ID: 15172223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Component activity of the isoenzyme spectra of Saccharomyces cerevisiae, Saccharomyces carlsbergensis and their hybrids].
    Orlova VS; Semikhatova NM
    Mikrobiologiia; 1983; 52(5):744-9. PubMed ID: 6363888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visceral leishmaniasis unresponsive to pentostam caused by Leishmania tropica in Kenya.
    Mebrahtu Y; Lawyer P; Githure J; Were JB; Muigai R; Hendricks L; Leeuwenburg J; Koech D; Roberts C
    Am J Trop Med Hyg; 1989 Sep; 41(3):289-94. PubMed ID: 2552850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leishmania major : detection of membrane-bound protein tyrosine phosphatase.
    Aguirre-García MM; Escalona-Montaño AR; Bakalara N; Pérez-Torres A; Gutiérrez-Kobeh L; Becker I
    Parasitology; 2006 May; 132(Pt 5):641-9. PubMed ID: 16393367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.