BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 16274707)

  • 1. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
    Dong M; Vongchampa V; Gingipalli L; Cloutier JF; Kow YW; O'Connor T; Dedon PC
    Mutat Res; 2006 Feb; 594(1-2):120-34. PubMed ID: 16274707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of 2'-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations.
    Dong M; Wang C; Deen WM; Dedon PC
    Chem Res Toxicol; 2003 Sep; 16(9):1044-55. PubMed ID: 12971791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII.
    Smith CC; O'Donovan MR; Martin EA
    Mutagenesis; 2006 May; 21(3):185-90. PubMed ID: 16597659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress.
    Nakano T; Katafuchi A; Shimizu R; Terato H; Suzuki T; Tauchi H; Makino K; Skorvaga M; Van Houten B; Ide H
    Nucleic Acids Res; 2005; 33(7):2181-91. PubMed ID: 15831791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of DNA repair enzymes in the cellular resistance to oxidative stress.
    Laval J
    Pathol Biol (Paris); 1996 Jan; 44(1):14-24. PubMed ID: 8734295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for the detection of antioxidants which prevent age related diseases: a critical review with particular emphasis on human intervention studies.
    Hoelzl C; Bichler J; Ferk F; Simic T; Nersesyan A; Elbling L; Ehrlich V; Chakraborty A; Knasmüller S
    J Physiol Pharmacol; 2005 Mar; 56 Suppl 2():49-64. PubMed ID: 16077190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized guanine lesions as modulators of gene transcription. Altered p50 binding affinity and repair shielding by 7,8-dihydro-8-oxo-2'-deoxyguanosine lesions in the NF-kappaB promoter element.
    Hailer-Morrison MK; Kotler JM; Martin BD; Sugden KD
    Biochemistry; 2003 Aug; 42(32):9761-70. PubMed ID: 12911319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations.
    Ridnour LA; Thomas DD; Mancardi D; Espey MG; Miranda KM; Paolocci N; Feelisch M; Fukuto J; Wink DA
    Biol Chem; 2004 Jan; 385(1):1-10. PubMed ID: 14977040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomarkers of oxidative damage to DNA and repair.
    Loft S; Høgh Danielsen P; Mikkelsen L; Risom L; Forchhammer L; Møller P
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1071-6. PubMed ID: 18793191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage and repair in type 2 diabetes mellitus.
    Blasiak J; Arabski M; Krupa R; Wozniak K; Zadrozny M; Kasznicki J; Zurawska M; Drzewoski J
    Mutat Res; 2004 Oct; 554(1-2):297-304. PubMed ID: 15450427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of a novel cell differentiation-associated gene, JWA during oxidative damage in K562 and MCF-7 cells.
    Zhu T; Chen R; Li AP; Liu J; Liu QZ; Chang HC; Zhou JW
    J Biomed Sci; 2005; 12(1):219-27. PubMed ID: 15864752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reactive oxygen and nitrogen species in inflammatory process].
    Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J
    Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers.
    Møller P; Vogel U; Pedersen A; Dragsted LO; Sandström B; Loft S
    Cancer Epidemiol Biomarkers Prev; 2003 Oct; 12(10):1016-22. PubMed ID: 14578137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surveying the damage: the challenges of developing nucleic acid biomarkers of inflammation.
    Son J; Pang B; McFaline JL; Taghizadeh K; Dedon PC
    Mol Biosyst; 2008 Sep; 4(9):902-8. PubMed ID: 18704228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of oxidized abasic sites by exonuclease III, endonuclease IV, and endonuclease III.
    Greenberg MM; Weledji YN; Kim J; Bales BC
    Biochemistry; 2004 Jun; 43(25):8178-83. PubMed ID: 15209514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair.
    Sliwinski T; Rozej W; Morawiec-Bajda A; Morawiec Z; Reiter R; Blasiak J
    Mutat Res; 2007 Dec; 634(1-2):220-7. PubMed ID: 17851115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite.
    Burney S; Niles JC; Dedon PC; Tannenbaum SR
    Chem Res Toxicol; 1999 Jun; 12(6):513-20. PubMed ID: 10368314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of thioredoxin domain-containing 5 in resistance to nitrosative stress.
    Lee HW; Hitchcock TM; Park SH; Mi R; Kraft JD; Luo J; Cao W
    Free Radic Biol Med; 2010 Sep; 49(5):872-80. PubMed ID: 20550962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the in vitro genotoxicity of anticancer drugs idarubicin and mitoxantrone.
    Błasiak J; Gloc E; Warszawski M
    Acta Biochim Pol; 2002; 49(1):145-55. PubMed ID: 12136935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping oxidative DNA damage using ligation-mediated polymerase chain reaction technology.
    Rodriguez H; Akman SA; Holmquist GP; Wilson GL; Driggers WJ; LeDoux SP
    Methods; 2000 Oct; 22(2):148-56. PubMed ID: 11020329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.