BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16274928)

  • 1. Tyrosine transport in fibroblasts from healthy volunteers and patients with schizophrenia.
    Olsson E; Wiesel FA; Bjerkenstedt L; Venizelos N
    Neurosci Lett; 2006 Jan; 393(2-3):211-5. PubMed ID: 16274928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of tyrosine transport in fibroblast cells from healthy controls.
    Vumma R; Wiesel FA; Flyckt L; Bjerkenstedt L; Venizelos N
    Neurosci Lett; 2008 Mar; 434(1):56-60. PubMed ID: 18262359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrant amino acid transport in fibroblasts from patients with bipolar disorder.
    Persson ML; Johansson J; Vumma R; Raita J; Bjerkenstedt L; Wiesel FA; Venizelos N
    Neurosci Lett; 2009 Jun; 457(1):49-52. PubMed ID: 19429160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-independent transporters, LAT-2 and b0,+, exchange L-DOPA with neutral and basic amino acids in two clonal renal cell lines.
    Gomes P; Soares-da-Silva P
    J Membr Biol; 2002 Mar; 186(2):63-80. PubMed ID: 11944084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant amino acid transport in fibroblasts from children with autism.
    Fernell E; Karagiannakis A; Edman G; Bjerkenstedt L; Wiesel FA; Venizelos N
    Neurosci Lett; 2007 May; 418(1):82-6. PubMed ID: 17412511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms.
    Fang J; Mao D; Smith CH; Fant ME
    Growth Horm IGF Res; 2006; 16(5-6):318-25. PubMed ID: 17035059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea.
    Katragadda S; Talluri RS; Pal D; Mitra AK
    Curr Eye Res; 2005 Nov; 30(11):989-1002. PubMed ID: 16282133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of transport systems of L-tyrosine in mouse mammary gland: characterization of system T.
    Rekha ; Kansal VK
    Indian J Exp Biol; 1996 Aug; 34(8):750-7. PubMed ID: 8979480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant tyrosine transport across the fibroblast membrane in patients with schizophrenia--indications of maternal inheritance.
    Flyckt L; Edman G; Venizelos N; Borg K
    J Psychiatr Res; 2011 Apr; 45(4):519-25. PubMed ID: 20728902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of adaptative regulation for IL-1 beta action on system A activity in human synovial cells.
    Le Maire V; Hernvann A; Vaubourdolle M; Ekindjian OG; Aussel C
    J Cell Physiol; 1996 Sep; 168(3):721-6. PubMed ID: 8816927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and starvation induced regulation of methionine uptake sites in mouse mammary gland.
    Verma N; Kansal VK
    Indian J Exp Biol; 1995 Jul; 33(7):516-20. PubMed ID: 7590960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified method to quantify dysregulated tyrosine transport in schizophrenia.
    Bongiovanni R; Leonard S; Jaskiw GE
    Schizophr Res; 2013 Nov; 150(2-3):386-91. PubMed ID: 24051014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional activity of a large neutral amino acid transporter (LAT) in rabbit retina: a study involving the in vivo retinal uptake and vitreal pharmacokinetics of L-phenyl alanine.
    Atluri H; Talluri RS; Mitra AK
    Int J Pharm; 2008 Jan; 347(1-2):23-30. PubMed ID: 17686592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between [
    Kagawa S; Nishii R; Higashi T; Yamauchi H; Ogawa E; Okudaira H; Kobayashi M; Yoshimoto M; Shikano N; Kawai K
    Nucl Med Biol; 2017 Jun; 49():8-15. PubMed ID: 28284101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of the routes of methionine transport in mouse mammary glands.
    Verma N; Kansal VK
    Indian J Med Res; 1993 Dec; 98():297-304. PubMed ID: 8132234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-O-methyl-6-18F-fluoro-L-dopa, a new tumor imaging agent: investigation of transport mechanism in vitro.
    Bergmann R; Pietzsch J; Fuechtner F; Pawelke B; Beuthien-Baumann B; Johannsen B; Kotzerke J
    J Nucl Med; 2004 Dec; 45(12):2116-22. PubMed ID: 15585490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The L-amino acid carrier inhibitor 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) reduces L-dopa-elicited responses in dopaminergic neurons of the substantia nigra pars compacta.
    Sebastianelli L; Ledonne A; Marrone MC; Bernardi G; Mercuri NB
    Exp Neurol; 2008 Jul; 212(1):230-3. PubMed ID: 18501350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATA2-mediated amino acid uptake following partial hepatectomy is regulated by redistribution to the plasma membrane.
    Freeman TL; Thiele GM; Tuma DJ; Machu TK; Mailliard ME
    Arch Biochem Biophys; 2002 Apr; 400(2):215-22. PubMed ID: 12054432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between L-DOPA and 3-O-methyl-L-DOPA for transport in immortalised rat capillary cerebral endothelial cells.
    Gomes P; Soares-da-Silva P
    Neuropharmacology; 1999 Sep; 38(9):1371-80. PubMed ID: 10471091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.