BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 16274973)

  • 1. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus competition by inhibitory interference.
    Tiesinga PH
    Neural Comput; 2005 Nov; 17(11):2421-53. PubMed ID: 16156934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional modulation of firing rate and synchrony in a model cortical network.
    Buia C; Tiesinga P
    J Comput Neurosci; 2006 Jun; 20(3):247-64. PubMed ID: 16683206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
    Tiesinga PH; Sejnowski TJ
    Neural Comput; 2004 Feb; 16(2):251-75. PubMed ID: 15006096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective attention through phase relationship of excitatory and inhibitory input synchrony in a model cortical neuron.
    Mishra J; Fellous JM; Sejnowski TJ
    Neural Netw; 2006 Nov; 19(9):1329-46. PubMed ID: 17027225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas.
    Ardid S; Wang XJ; Gomez-Cabrero D; Compte A
    J Neurosci; 2010 Feb; 30(8):2856-70. PubMed ID: 20181583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    Neurocomputing (Amst); 2004 Jun; 58-60():641-646. PubMed ID: 20802816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of interneuron diversity in the cortical microcircuit for attention.
    Buia CI; Tiesinga PH
    J Neurophysiol; 2008 May; 99(5):2158-82. PubMed ID: 18287553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks.
    Devalle F; Roxin A; Montbrió E
    PLoS Comput Biol; 2017 Dec; 13(12):e1005881. PubMed ID: 29287081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Configures Synchronization Within Local Neuronal Networks for Processing of the Behaviorally Relevant Stimulus.
    Drebitz E; Haag M; Grothe I; Mandon S; Kreiter AK
    Front Neural Circuits; 2018; 12():71. PubMed ID: 30210309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.
    Zhang M; Zhao Z; He P; Wang J
    Biomed Mater Eng; 2014; 24(6):2635-44. PubMed ID: 25226967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike synchrony generated by modulatory common input through NMDA-type synapses.
    Wagatsuma N; von der Heydt R; Niebur E
    J Neurophysiol; 2016 Sep; 116(3):1418-33. PubMed ID: 27486111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.
    Baroni F; Burkitt AN; Grayden DB
    PLoS Comput Biol; 2014 May; 10(5):e1003574. PubMed ID: 24784237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.
    Hu H; Agmon A
    J Neurophysiol; 2015 Jul; 114(1):624-37. PubMed ID: 25972585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified and quantitative network model for spatial attention in area V4.
    Hugues E; José JV
    J Physiol Paris; 2010; 104(1-2):84-90. PubMed ID: 19941956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythm and Synchrony in a Cortical Network Model.
    Chariker L; Shapley R; Young LS
    J Neurosci; 2018 Oct; 38(40):8621-8634. PubMed ID: 30120205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.
    Zhou P; Burton SD; Snyder AC; Smith MA; Urban NN; Kass RE
    PLoS Comput Biol; 2015 Oct; 11(10):e1004549. PubMed ID: 26465621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity.
    Talathi SS; Hwang DU; Ditto WL
    J Comput Neurosci; 2008 Oct; 25(2):262-81. PubMed ID: 18297384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.