These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 16275286)
1. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat. Morgan TJ; Herod AA; Brain SA; Chambers FM; Kandiyoti R J Chromatogr A; 2005 Nov; 1095(1-2):81-8. PubMed ID: 16275286 [TBL] [Abstract][Full Text] [Related]
2. Investigation of organic matter dynamics during in-vessel composting of an aged coal-tar contaminated soil using fluorescence excitation-emission spectroscopy. Antízar-Ladislao B; Lopez-Real J; Beck AJ Chemosphere; 2006 Jul; 64(5):839-47. PubMed ID: 16330081 [TBL] [Abstract][Full Text] [Related]
3. A speciation methodology to study the contributions of humic-like and fulvic-like acids to the mobilization of metals from compost using size exclusion chromatography-ultraviolet absorption-inductively coupled plasma mass spectrometry and deconvolution analysis. Laborda F; Bolea E; Górriz MP; Martín-Ruiz MP; Ruiz-Beguería S; Castillo JR Anal Chim Acta; 2008 Jan; 606(1):1-8. PubMed ID: 18068764 [TBL] [Abstract][Full Text] [Related]
4. High-performance size-exclusion chromatography of humic substances on the hydroxyethyl methacrylate column. Janos P; Zatrepálková I J Chromatogr A; 2007 Aug; 1160(1-2):160-5. PubMed ID: 17537450 [TBL] [Abstract][Full Text] [Related]
5. Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog. Gondar D; Iglesias A; López R; Fiol S; Antelo JM; Arce F Chemosphere; 2006 Mar; 63(1):82-8. PubMed ID: 16146645 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH and ionic strength on the binding of paraquat and MCPA by soil fulvic and humic acids. Iglesias A; López R; Gondar D; Antelo J; Fiol S; Arce F Chemosphere; 2009 Jun; 76(1):107-13. PubMed ID: 19269671 [TBL] [Abstract][Full Text] [Related]
7. Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique. Kirishima A; Ohnishi T; Sato N; Tochiyama O Talanta; 2009 Jul; 79(2):446-53. PubMed ID: 19559903 [TBL] [Abstract][Full Text] [Related]
9. Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances. Herod AA; Zhuo Y; Kandiyoti R J Biochem Biophys Methods; 2003 Jun; 56(1-3):335-61. PubMed ID: 12834988 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography--organic carbon detection--organic nitrogen detection (LC-OCD-OND). Huber SA; Balz A; Abert M; Pronk W Water Res; 2011 Jan; 45(2):879-85. PubMed ID: 20937513 [TBL] [Abstract][Full Text] [Related]
11. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Bratskaya S; Golikov A; Lutsenko T; Nesterova O; Dudarchik V Chemosphere; 2008 Sep; 73(4):557-63. PubMed ID: 18657293 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy. Hertkorn N; Permin A; Perminova I; Kovalevskii D; Yudov M; Petrosyan V; Kettrup A J Environ Qual; 2002; 31(2):375-87. PubMed ID: 11931424 [TBL] [Abstract][Full Text] [Related]
13. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Clemente R; Bernal MP Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023 [TBL] [Abstract][Full Text] [Related]
14. Degradation/solubilization of Chinese lignite by Penicillium sp. P6. Yuan HL; Yang JS; Wang FQ; Chen WX Prikl Biokhim Mikrobiol; 2006; 42(1):59-62. PubMed ID: 16521578 [TBL] [Abstract][Full Text] [Related]
15. [The functional mechanism between the pesticide Pyrimorph and humic acid]. Huang JL; Xiao YM; Liu JP; Fu B; Wu YH; Ren WH; Li N; Qin ZH Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1866-9. PubMed ID: 18975821 [TBL] [Abstract][Full Text] [Related]
16. Binding of atrazine to humic substances from soil, peat and coal related to their structure. Kulikova NA; Perminova IV Environ Sci Technol; 2002 Sep; 36(17):3720-4. PubMed ID: 12322743 [TBL] [Abstract][Full Text] [Related]
17. Identification of compound classes in soil and peat fulvic acids as observed by electrospray ionization tandem mass spectrometry. McIntyre C; McRae C; Jardine D; Batts BD Rapid Commun Mass Spectrom; 2002; 16(16):1604-9. PubMed ID: 12203255 [TBL] [Abstract][Full Text] [Related]
18. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils. Steely S; Amarasiriwardena D; Xing B Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851 [TBL] [Abstract][Full Text] [Related]
19. Effects of pollution on humic substances. Schnitzer M; Kerndorff H J Environ Sci Health B; 1980; 15(4):431-56. PubMed ID: 6447171 [TBL] [Abstract][Full Text] [Related]
20. An improved method to extract RNA from soil with efficient removal of humic acids. Wang Y; Morimoto S; Ogawa N; Oomori T; Fujii T J Appl Microbiol; 2009 Oct; 107(4):1168-77. PubMed ID: 19486421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]