These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16275289)

  • 1. Alternative approaches for the estimation of the band broadening parameters in single-detection size exclusion chromatography.
    Vega JR; Schnöll-Bitai I
    J Chromatogr A; 2005 Nov; 1095(1-2):102-12. PubMed ID: 16275289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much does band broadening adulterate results deduced from chromatograms measured by size-exclusion chromatography really?
    Schnöll-Bitai I; Mader C
    J Chromatogr A; 2006 Dec; 1137(2):198-206. PubMed ID: 17069824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of band broadening in size-exclusion chromatography. I. A method based on analyzing narrow standards with a molar mass-sensitive detector.
    Yossen MM; Vega JR; Meira GR
    J Chromatogr A; 2006 Sep; 1128(1-2):171-80. PubMed ID: 16828786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the band broadening parameters in single detection size-exclusion chromatography: a comparative study of various column combinations.
    Schnöll-Bitai I; Vega J; Mader C
    Anal Chim Acta; 2007 Nov; 604(1):9-17. PubMed ID: 17983775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chain-length-dependent impact of band broadening on the molar-mass determination of synthetic polymers via size-exclusion chromatography.
    Wolpers A; Vana P
    J Chromatogr A; 2016 Aug; 1458():35-45. PubMed ID: 27393628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.
    Gruendling T; Guilhaus M; Barner-Kowollik C
    Anal Chem; 2008 Sep; 80(18):6915-27. PubMed ID: 18690749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical properties of the band-broadening function.
    Netopilík M
    J Chromatogr A; 2006 Nov; 1133(1-2):95-103. PubMed ID: 16949595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molar mass distributions of linear homopolymers by size exclusion chromatography with light scattering detection: A method for automatic band broadening correction.
    Clementi LA; Yossen MM; Vega JR
    J Chromatogr A; 2019 Jun; 1595():136-143. PubMed ID: 30833024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.
    Mourey TH; Leon JW; Bennett JR; Bryan TG; Slater LA; Balke ST
    J Chromatogr A; 2007 Mar; 1146(1):51-60. PubMed ID: 17307193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of first-dimension undersampling on effective peak capacity in comprehensive two-dimensional separations.
    Davis JM; Stoll DR; Carr PW
    Anal Chem; 2008 Jan; 80(2):461-73. PubMed ID: 18076145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography.
    Grimes BA; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2007 Mar; 1144(1):14-29. PubMed ID: 17126846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of band broadening in size exclusion chromatography.
    Schnöll-Bitai I
    J Chromatogr A; 2005 Aug; 1084(1-2):160-6. PubMed ID: 16114249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A broad-standard technique for correcting for band broadening in size-exclusion chromatography.
    Zhang P; Mazoyer P; Gilbert RG
    J Chromatogr A; 2016 Apr; 1443():267-71. PubMed ID: 27016112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical basis for parameter selection and instrument design in comprehensive size-exclusion chromatography x liquid chromatography.
    Bedani F; Kok WT; Janssen HG
    J Chromatogr A; 2006 Nov; 1133(1-2):126-34. PubMed ID: 16959256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the molecular weight distribution of debranched starch.
    Castro JV; Ward RM; Gilbert RG; Fitzgerald MA
    Biomacromolecules; 2005; 6(4):2260-70. PubMed ID: 16004470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for studying reaction kinetics in gas chromatography, exemplified by using the 1-chloro-2,2-dimethylaziridine interconversion reaction.
    Krupcík J; Mydlová J; Májek P; Simon P; Armstrong DW
    J Chromatogr A; 2008 Apr; 1186(1-2):144-60. PubMed ID: 18243224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting physically useful information from multiple-detection size-separation data for starch.
    Gray-Weale AA; Cave RA; Gilbert RG
    Biomacromolecules; 2009 Sep; 10(9):2708-13. PubMed ID: 19663477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.
    Baeza-Baeza JJ; Pous-Torres S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2010 Apr; 1217(14):2147-57. PubMed ID: 20193951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De facto molecular weight distributions of glucans by size-exclusion chromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.
    Praznik W; Huber A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Sep; 824(1-2):295-307. PubMed ID: 16112622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic theory of size exclusion chromatography: peak shape analysis on single columns.
    Felinger A; Pasti L; Dondi F; van Hulst M; Schoenmakers PJ; Martin M
    Anal Chem; 2005 May; 77(10):3138-48. PubMed ID: 15889902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.