BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1627541)

  • 1. Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy.
    Pearce KH; Hiskey RG; Thompson NL
    Biochemistry; 1992 Jul; 31(26):5983-95. PubMed ID: 1627541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the membrane binding kinetics of bovine prothrombin and its fragment 1.
    Pearce KH; Hof M; Lentz BR; Thompson NL
    J Biol Chem; 1993 Nov; 268(31):22984-91. PubMed ID: 8226813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational diffusion of bovine prothrombin fragment 1 weakly bound to supported planar membranes: measurement by total internal reflection with fluorescence pattern photobleaching recovery.
    Huang Z; Pearce KH; Thompson NL
    Biophys J; 1994 Oct; 67(4):1754-66. PubMed ID: 7819508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence from total internal reflection fluorescence microscopy for calcium-independent binding of prothrombin to negatively charged planar phospholipid membranes.
    Tendian SW; Lentz BR; Thompson NL
    Biochemistry; 1991 Nov; 30(45):10991-9. PubMed ID: 1932023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles.
    Lentz BR; Alford DR; Jones ME; Dombrose FA
    Biochemistry; 1985 Nov; 24(24):6997-7005. PubMed ID: 3841009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bovine prothrombin fragment 1 on the translational diffusion of phospholipids in Langmuir-Blodgett monolayers.
    Huang Z; Pearce KH; Thompson NL
    Biochim Biophys Acta; 1992 Dec; 1112(2):259-65. PubMed ID: 1457457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The determination of a calcium-dependent binding constant of the bovine prothrombin Gla domain (residues 1-45) to phospholipid vesicles.
    Weber DJ; Pollock JS; Pedersen LG; Hiskey RG
    Biochem Biophys Res Commun; 1988 Aug; 155(1):230-5. PubMed ID: 3415682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased IgG-Fc gamma RII dissociation kinetics in the presence of a protein antigen.
    Sheets ED; Chen L; Thompson NL
    Mol Immunol; 1997 May; 34(7):519-26. PubMed ID: 9364217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond tryptophan fluorescence of membrane-bound prothrombin fragment 1.
    Hof M
    Biochim Biophys Acta; 1998 Oct; 1388(1):143-53. PubMed ID: 9774720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the membrane surface in the activation of human coagulation factor X.
    Krishnaswamy S; Field KA; Edgington TS; Morrissey JH; Mann KG
    J Biol Chem; 1992 Dec; 267(36):26110-20. PubMed ID: 1464622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of bovine prothrombin fragment 1 in the presence and absence of Ca(II) ions. Loss of positive cooperativity in Ca(II) ion binding for the modified proteins.
    Weber DJ; Berkowitz P; Panek MG; Huh NW; Pedersen LG; Hiskey RG
    J Biol Chem; 1992 Mar; 267(7):4564-9. PubMed ID: 1531656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding kinetics of an anti-dinitrophenyl monoclonal Fab on supported phospholipid monolayers measured by total internal reflection with fluorescence photobleaching recovery.
    Pisarchick ML; Gesty D; Thompson NL
    Biophys J; 1992 Jul; 63(1):215-23. PubMed ID: 1420869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of membrane phase behavior as a tool to detect extrinsic protein-induced domain formation: binding of prothrombin to phosphatidylserine/phosphatidylcholine vesicles.
    Tendian SW; Lentz BR
    Biochemistry; 1990 Jul; 29(28):6720-9. PubMed ID: 2397210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization.
    Perera L; Darden TA; Pedersen LG
    Biochemistry; 1998 Aug; 37(31):10920-7. PubMed ID: 9692984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding.
    Jones ME; Lentz BR
    Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A domain of membrane-bound blood coagulation factor Va is located far from the phospholipid surface. A fluorescence energy transfer measurement.
    Isaacs BS; Husten EJ; Esmon CT; Johnson AE
    Biochemistry; 1986 Aug; 25(17):4958-69. PubMed ID: 3768326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron scattering determination of the binding of prothrombin to lipid vesicles.
    Torbet J; Freyssinet JM
    Biochemistry; 1987 Dec; 26(24):7791-8. PubMed ID: 3427105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-dependent coagulation reaction is independent of the concentration of phospholipid-bound substrate: fluid phase factor X regulates the extrinsic system.
    Forman SD; Nemerson Y
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4675-9. PubMed ID: 3487782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: application to human coagulation proteins.
    Cutsforth GA; Whitaker RN; Hermans J; Lentz BR
    Biochemistry; 1989 Sep; 28(18):7453-61. PubMed ID: 2819080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of membrane fluidity and fatty acid composition on the prothrombin-converting activity of phospholipid vesicles.
    Govers-Riemslag JW; Janssen MP; Zwaal RF; Rosing J
    Biochemistry; 1992 Oct; 31(41):10000-8. PubMed ID: 1390758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.