These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1627549)

  • 1. Isomerization of (R)- and (S)-glutathiolactaldehydes by glyoxalase I: the case for dichotomous stereochemical behavior in a single active site.
    Landro JA; Brush EJ; Kozarich JW
    Biochemistry; 1992 Jul; 31(26):6069-77. PubMed ID: 1627549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonstereospecific substrate usage by glyoxalase I.
    Griffis CE; Ong LH; Buettner L; Creighton DJ
    Biochemistry; 1983 Jun; 22(12):2945-51. PubMed ID: 6347254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of glyoxalase I by the enediol mimic S-(N-hydroxy-N-methylcarbamoyl)glutathione. The possible basis of a tumor-selective anticancer strategy.
    Hamilton DS; Creighton DJ
    J Biol Chem; 1992 Dec; 267(35):24933-6. PubMed ID: 1459997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caution: the glycylmethyl and glycylethyl esters of glutathione are substrates for glyoxalase I.
    Hamilton DS; Creighton DJ
    Biochim Biophys Acta; 1992 Sep; 1159(2):203-8. PubMed ID: 1390924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic binding is not an independent stereochemical determinant in the yeast glyoxalase I reaction.
    Creighton DJ; Weiner A; Buettner L
    Biophys Chem; 1980 Apr; 11(2):265-9. PubMed ID: 6989412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxalase 2 deficiency in the erythrocytes of a horse: 1H NMR studies of enzyme kinetics and transport of S-lactoylglutathione.
    Rae C; Board PG; Kuchel PW
    Arch Biochem Biophys; 1991 Dec; 291(2):291-9. PubMed ID: 1952942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism.
    Al-Timari A; Douglas KT
    Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher Flexibility of Glu-172 Explains the Unusual Stereospecificity of Glyoxalase I.
    Jafari S; Kazemi N; Ryde U; Irani M
    Inorg Chem; 2018 May; 57(9):4944-4958. PubMed ID: 29634252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion.
    Sellin S; Eriksson LE; Mannervik B
    Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of efficiency in the glyoxalase pathway.
    Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK
    Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR and computer modeling studies of the conformations of glutathione derivatives at the active site of glyoxalase I.
    Rosevear PR; Sellin S; Mannervik B; Kuntz ID; Mildvan AS
    J Biol Chem; 1984 Sep; 259(18):11436-47. PubMed ID: 6547959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereospecificity of substrate usage by glyoxalase 1: nuclear magnetic resonance studies of kinetics and hemithioacetal substrate conformation.
    Rae C; O'Donoghue SI; Bubb WA; Kuchel PW
    Biochemistry; 1994 Mar; 33(12):3548-59. PubMed ID: 8142352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver.
    Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP
    Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-(N-aryl-N-hydroxycarbamoyl)glutathione derivatives are tight-binding inhibitors of glyoxalase I and slow substrates for glyoxalase II.
    Murthy NS; Bakeris T; Kavarana MJ; Hamilton DS; Lan Y; Creighton DJ
    J Med Chem; 1994 Jul; 37(14):2161-6. PubMed ID: 8035422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the N-terminus of glutathione in the action of yeast glyoxalase I.
    Douglas KT; Al-Timari A; D'Silva C; Gohel DI
    Biochem J; 1982 Nov; 207(2):323-29. PubMed ID: 7159385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies.
    Allen RE; Lo TW; Thornalley PJ
    J Protein Chem; 1993 Apr; 12(2):111-9. PubMed ID: 8489699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of the reaction catalyzed by glyoxalase I. Calculation of the equilibrium constant for the enzymatic reaction.
    Sellin S; Mannervik B
    J Biol Chem; 1983 Jul; 258(14):8872-5. PubMed ID: 6863314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and initial characterization of gamma-L-glutamyl-L-thiothreonylglycine and gamma-L-glutamyl-L-allo-thiothreonylglycine as steric probes of the active site of glyoxalase I.
    Xie XF; Creighton DJ
    Biochem Biophys Res Commun; 1991 May; 177(1):252-8. PubMed ID: 2043110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brief history of glyoxalase I and what we have learned about metal ion-dependent, enzyme-catalyzed isomerizations.
    Creighton DJ; Hamilton DS
    Arch Biochem Biophys; 2001 Mar; 387(1):1-10. PubMed ID: 11368170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-fluorenylmethoxycarbonyl glutathione and diesters: inhibition of mammalian glyoxalase II.
    Chyan MK; Elia AC; Principato GB; Giovannini E; Rosi G; Norton SJ
    Enzyme Protein; 1994-1995; 48(3):164-73. PubMed ID: 8589803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.